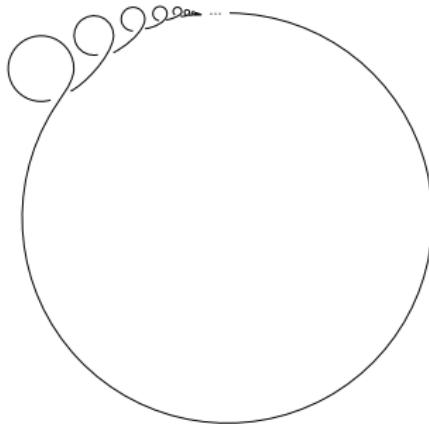
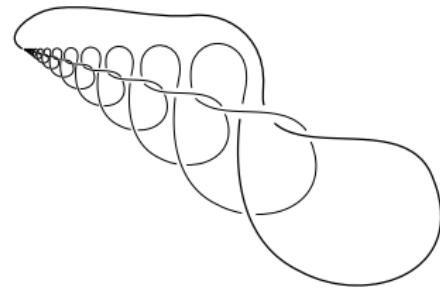


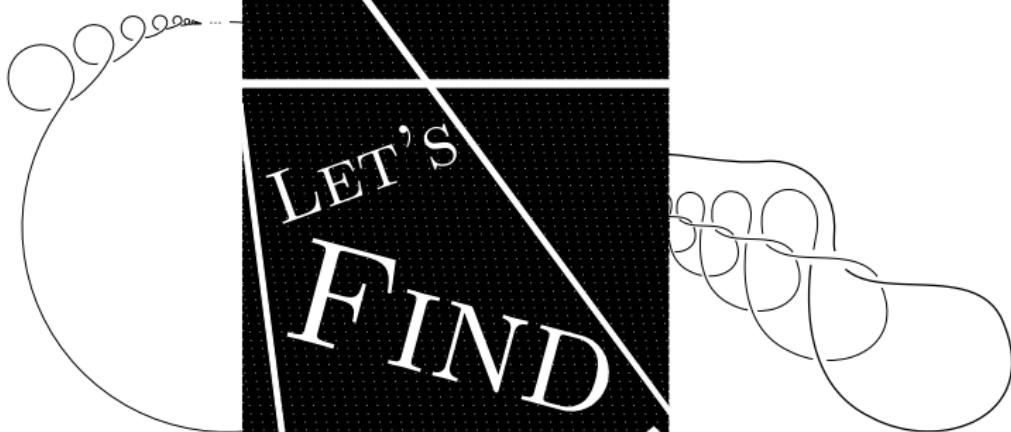
On Performing Countably-Many Reidemeister Moves

Forest Kobayashi


April 23rd, 2021


Where are we headed?

Where are we headed?


(a) What distinguishes this...

(b) ...From this?

Where are we headed?

(a) What disting

(b) ... From this?

Gameplan:

1. Intro

- “What’s a knot?”
- “When are knots ‘equivalent?’ How can we tell?”

2. Motivation

- Unknotting moves & “categorification”

3. The problem

- Tameness & wildness
- The recipe!

What is a knot?

Definition (Informal)

Twirl a string around and “fuse” the ends.

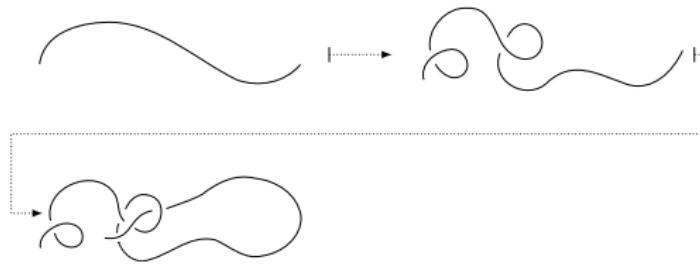
What is a knot?

Definition (Informal)

Twirl a string around and “fuse” the ends.

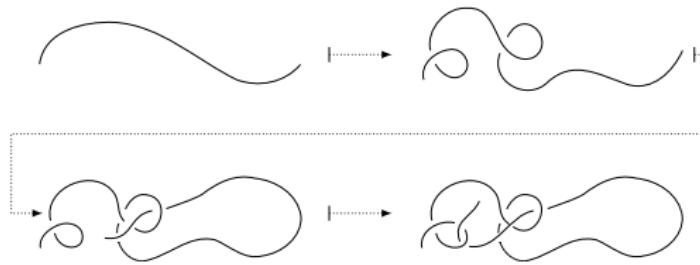
What is a knot?

Definition (Informal)


Twirl a string around and “fuse” the ends.

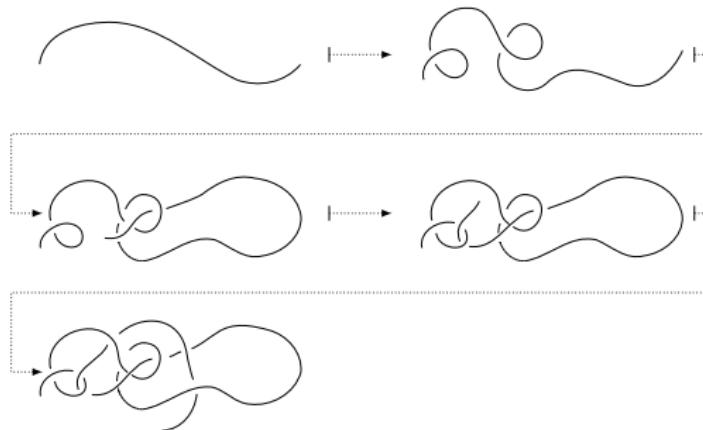
What is a knot?

Definition (Informal)


Twirl a string around and “fuse” the ends.

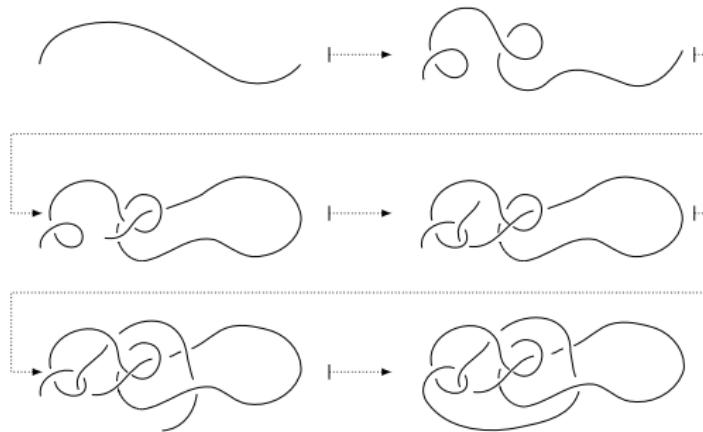
What is a knot?

Definition (Informal)


Twirl a string around and “fuse” the ends.

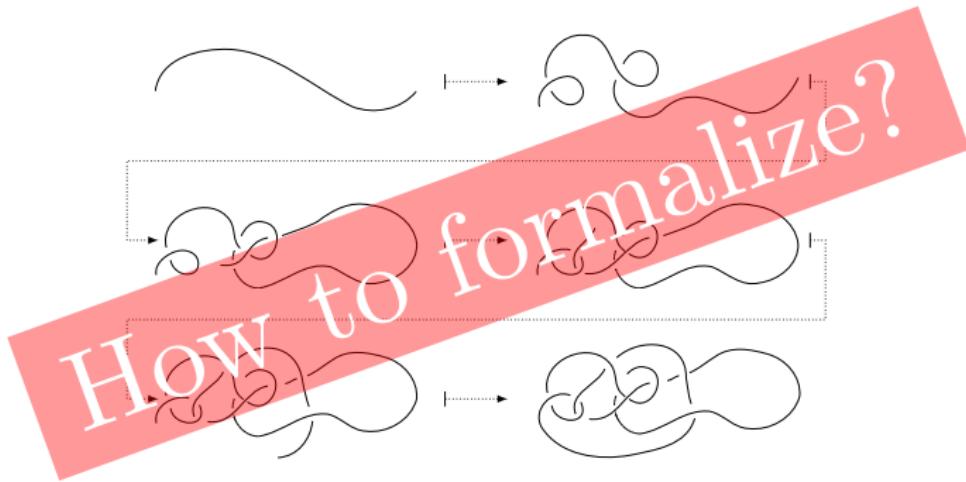
What is a knot?

Definition (Informal)


Twirl a string around and “fuse” the ends.

What is a knot?

Definition (Informal)


Twirl a string around and “fuse” the ends.

What is a knot?

Definition (Informal)

Twirl a string around and “fuse” the ends.

Prereq. Definition — Homeomorphism

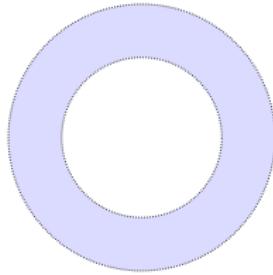
Definition (Homeomorphism)

A *homeomorphism* is an $f : X \rightarrow Y$ such that f is bijective and continuous with f^{-1} also continuous. (i.e. f does no cutting/gluing).

Prereq. Definition — Homeomorphism

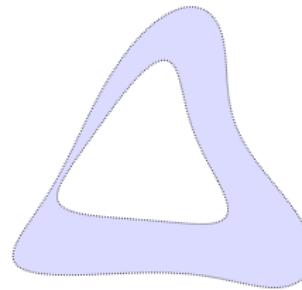
Definition (Homeomorphism)

A *homeomorphism* is an $f : X \rightarrow Y$ such that f is bijective and continuous with f^{-1} also continuous.



Prereq. Definition — Homeomorphism

Definition (Homeomorphism)

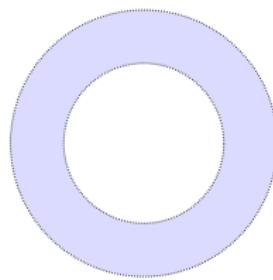

A *homeomorphism* is an $f : X \rightarrow Y$ such that f is bijective and continuous with f^{-1} also continuous. (i.e. f does no cutting/gluing).

Example 1:

X

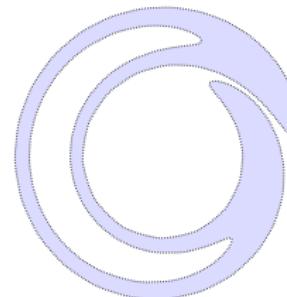
$$f_1 \rightarrow$$

Y



Prereq. Definition — Homeomorphism

Definition (Homeomorphism)

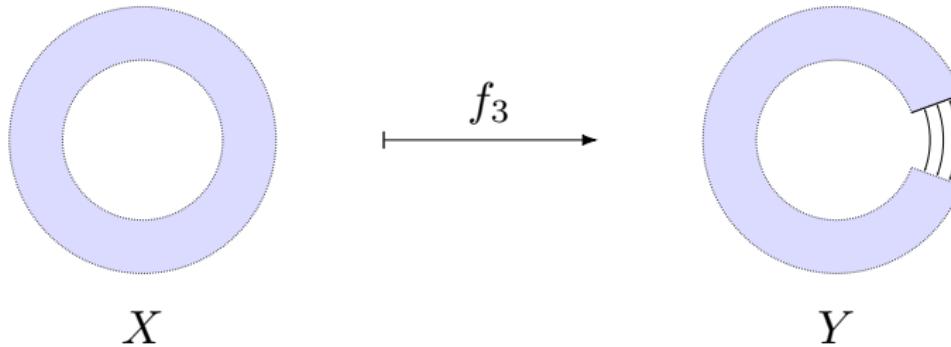

A *homeomorphism* is an $f : X \rightarrow Y$ such that f is bijective and continuous with f^{-1} also continuous. (i.e. f does no cutting/gluing).

Example 2:

X

$$f_2 \rightarrow$$

Y

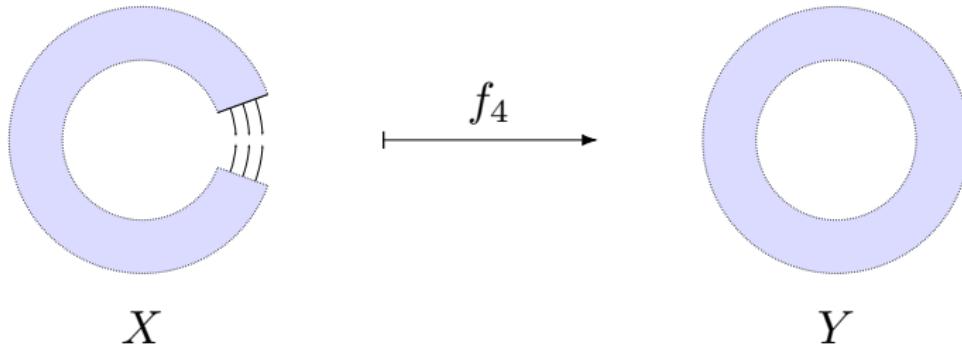


Prereq. Definition — Homeomorphism

Definition (Homeomorphism)

A *homeomorphism* is an $f : X \rightarrow Y$ such that f is bijective and continuous with f^{-1} also continuous. (i.e. f does no cutting/gluing).

Non-example 1: “Cutting” (f is not continuous)



Prereq. Definition — Homeomorphism

Definition (Homeomorphism)

A *homeomorphism* is an $f : X \rightarrow Y$ such that f is bijective and continuous with f^{-1} also continuous. (i.e. f does no cutting/gluing).

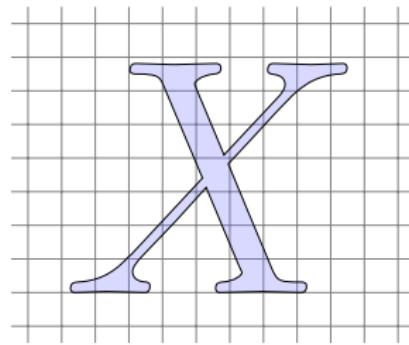
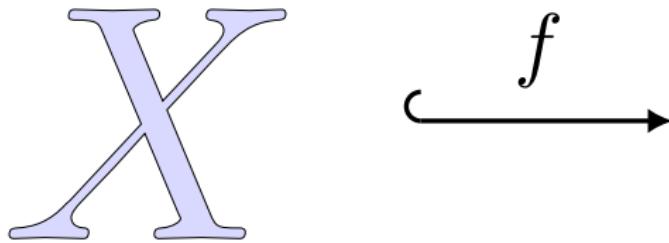
Non-example 2: “Gluing” (f^{-1} is not continuous)

Prereq. Definition — Homeomorphism

Definition (Homeomorphism)

A *homeomorphism* is an $f : X \rightarrow Y$ such that f is bijective and continuous with f^{-1} also continuous.

- ▶ Homeomorphisms preserve how things look “locally”
- ▶ X and Y are said to be *homeomorphic* if there’s a homeomorphism $f : X \rightarrow Y$

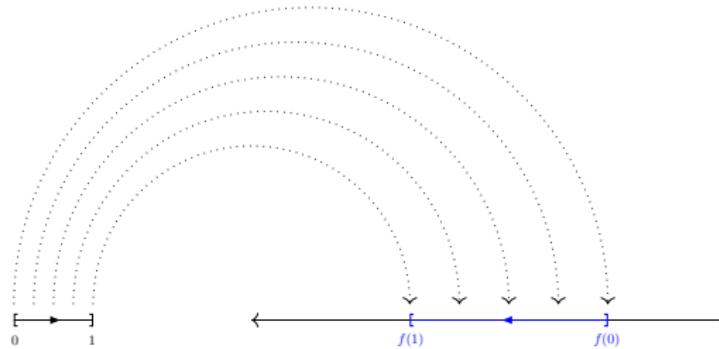



Prereq. Definition — Embeddings

Definition (Embedding)

$f : X \rightarrow Y$ is an *embedding* if f is a homeomorphism between X and $f(X)$. (Since f must be injective we typically write $f : X \hookrightarrow Y$)

Example 1: X is an X shape, Y is \mathbb{R}^2

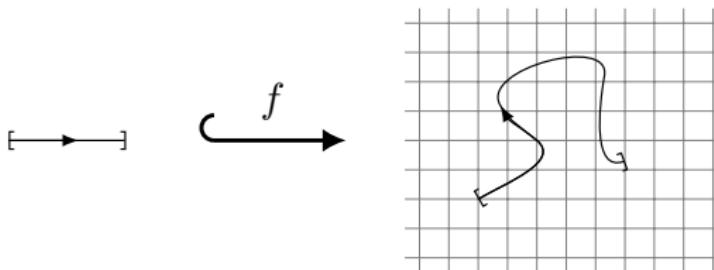


Prereq. Definition — Embeddings

Definition (Embedding)

$f : X \rightarrow Y$ is an *embedding* if f is a homeomorphism between X and $f(X)$. (Since f must be injective we typically write $f : X \hookrightarrow Y$)

Example 2: X is $[0, 1]$, Y is \mathbb{R}

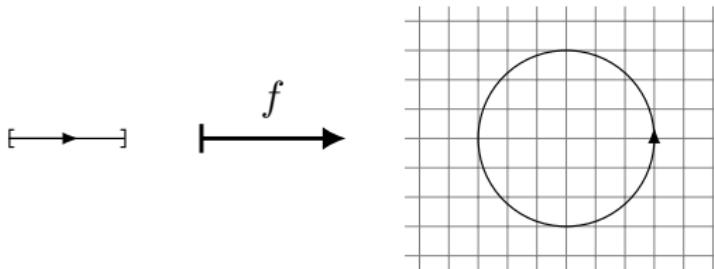


Prereq. Definition — Embeddings

Definition (Embedding)

$f : X \rightarrow Y$ is an *embedding* if f is a homeomorphism between X and $f(X)$. (Since f must be injective we typically write $f : X \hookrightarrow Y$)

Example 3: X is $[0, 1]$, Y is \mathbb{R}^2



Prereq. Definition — Embeddings

Definition (Embedding)

$f : X \rightarrow Y$ is an *embedding* if f is a homeomorphism between X and $f(X)$. (Since f must be injective we typically write $f : X \hookrightarrow Y$)

Non-example: X and $f(X)$ not homeomorphic (note the gluing!)

Prereq. Definition — Embeddings

Definition (Embedding)

$f : X \rightarrow Y$ is an *embedding* if f is a homeomorphism between X and $f(X)$. (Since f must be injective we typically write $f : X \hookrightarrow Y$)

- ▶ Takeaway: An embedding stuffs a copy of X into Y
- ▶ How can we use this to define knots?

Knots!

Definition (Knot)

A *knot* is an embedding $f : S^1 \hookrightarrow Y$. (For now assume $Y = \mathbb{R}^3$).

Knots!

Definition (Knot)

A *knot* is an embedding $f : S^1 \hookrightarrow Y$. (For now assume $Y = \mathbb{R}^3$).

Example 1:

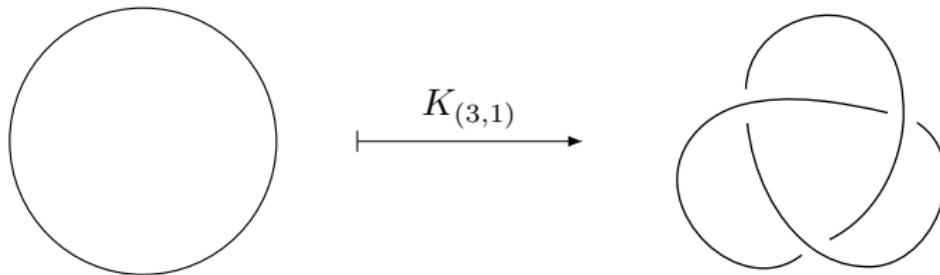


Figure: The “(3, 1)” knot

Knots!

Definition (Knot)

A *knot* is an embedding $f : S^1 \hookrightarrow Y$. (For now assume $Y = \mathbb{R}^3$).

Example 2:

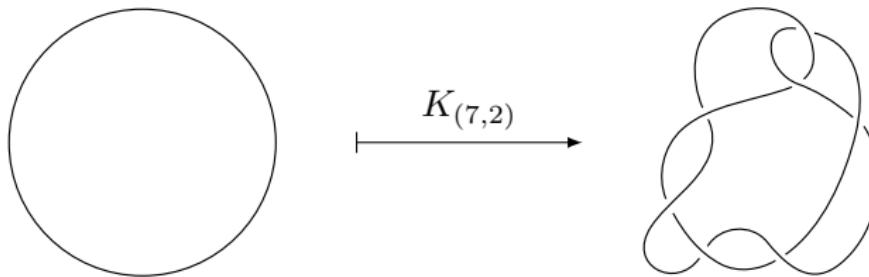


Figure: The “(7, 2)” knot

Knots!

Definition (Knot)

A *knot* is an embedding $f : S^1 \hookrightarrow Y$. (For now assume $Y = \mathbb{R}^3$).

Non-example 1: f is not an embedding (“cutting”)

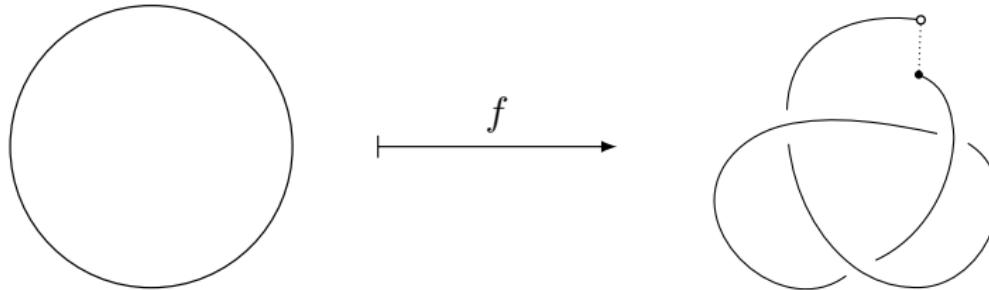


Figure: A “broken” knot

Knots!

Definition (Knot)

A *knot* is an embedding $f : S^1 \hookrightarrow Y$. (For now assume $Y = \mathbb{R}^3$).

Non-example 2: f is not an embedding (“gluing”)

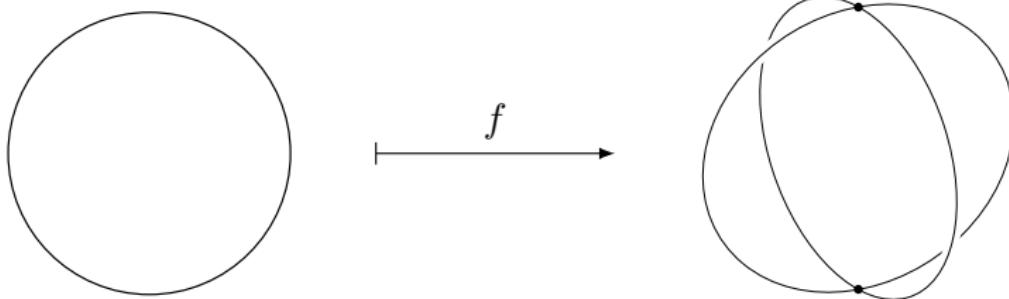
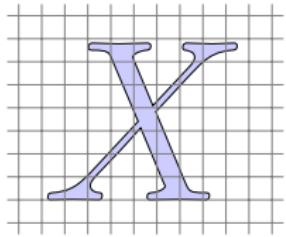


Figure: A “broken” knot

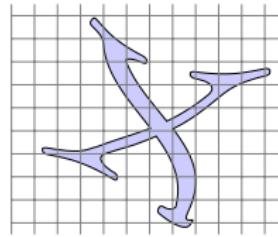
Knot equivalence

Definition (Equivalence of Embeddings in General)

Let $f_0, f_1 : X \rightarrow Y$ be embeddings. We say that f_0 is *equivalent* to f_1 if there exists a homeomorphism $h : Y \rightarrow Y$ such that $h \circ f_0 = f_1$.



Knot equivalence

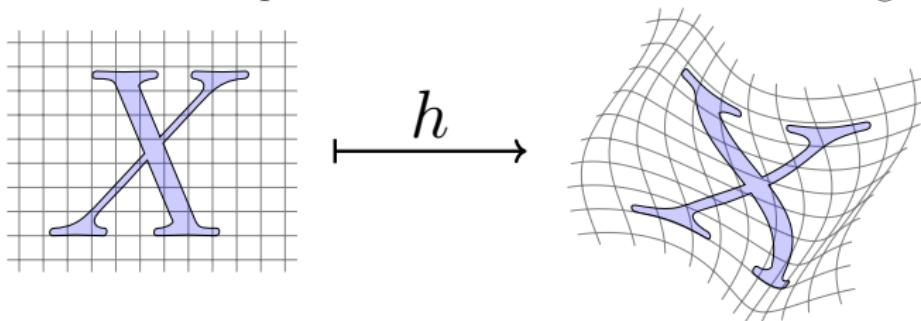

Definition (Equivalence of Embeddings in General)

Let $f_0, f_1 : X \rightarrow Y$ be embeddings. We say that f_0 is *equivalent* to f_1 if there exists a homeomorphism $h : Y \rightarrow Y$ such that $h \circ f_0 = f_1$.

Example: Consider two embeddings of an X shape.

(a) $f_0(X)$

(b) $f_1(X)$



Knot equivalence

Definition (Equivalence of Embeddings in General)

Let $f_0, f_1 : X \rightarrow Y$ be embeddings. We say that f_0 is *equivalent* to f_1 if there exists a homeomorphism $h : Y \rightarrow Y$ such that $h \circ f_0 = f_1$.

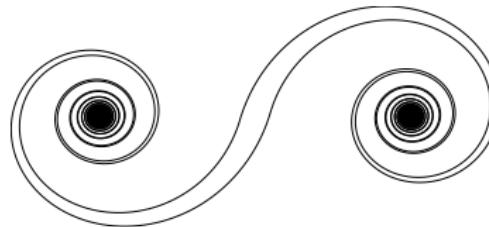
Example: These are equivalent. The h would look something like

Knot equivalence

Definition (Equivalence of Embeddings in General)

Let $f_0, f_1 : X \rightarrow Y$ be embeddings. We say that f_0 is *equivalent* to f_1 if there exists a homeomorphism $h : Y \rightarrow Y$ such that $h \circ f_0 = f_1$.

Equivalence is *heavily* dependent on Y .

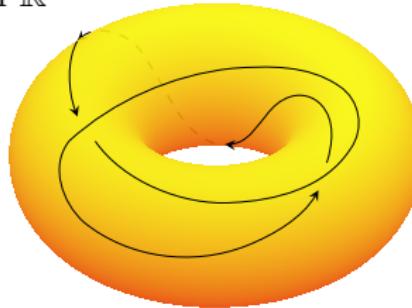

Knot equivalence

Definition (Equivalence of Embeddings in General)

Let $f_0, f_1 : X \rightarrow Y$ be embeddings. We say that f_0 is *equivalent* to f_1 if there exists a homeomorphism $h : Y \rightarrow Y$ such that $h \circ f_0 = f_1$.

Equivalence is *heavily* dependent on Y .

Example 1: In \mathbb{R}^2 , all embeddings of S^1 are equivalent. Even this can be turned into a normal circle!


Knot equivalence

Definition (Equivalence of Embeddings in General)

Let $f_0, f_1 : X \rightarrow Y$ be embeddings. We say that f_0 is *equivalent* to f_1 if there exists a homeomorphism $h : Y \rightarrow Y$ such that $h \circ f_0 = f_1$.

Equivalence is *heavily* dependent on Y .

Example 2: This embedding is “nontrivial” in a thickened torus, but not in \mathbb{R}^3

Knot equivalence

Definition (Equivalence of Embeddings in General)

Let $f_0, f_1 : X \rightarrow Y$ be embeddings. We say that f_0 is *equivalent* to f_1 if there exists a homeomorphism $h : Y \rightarrow Y$ such that $h \circ f_0 = f_1$.

Equivalence is *heavily* dependent on Y .

Example 3: All “nice” $f : S^1 \hookrightarrow \mathbb{R}^4$ are equivalent! (Proof: Ask at end if we have time)

In fact... in most “nice” cases, knotting can only occur when $\dim(Y) - \dim(X) = 2$

Knot equivalence

Definition (Equivalence of Embeddings in General)

Let $f_0, f_1 : X \rightarrow Y$ be embeddings. We say that f_0 is *equivalent* to f_1 if there exists a homeomorphism $h : Y \rightarrow Y$ such that $h \circ f_0 = f_1$.

Situation for $f : S^1 \hookrightarrow \mathbb{R}^3$ is the most studied

Example: First two are equivalent, but not to the third

Determining Equivalence: Difficulty #1

- ▶ Problem: Working with homeomorphisms explicitly is *incredibly* unergonomic.

Determining Equivalence: Difficulty #1

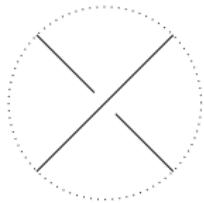
- ▶ Problem: Working with homeomorphisms explicitly is *incredibly* unergonomic.
- ▶ Desire: A *rigorous* way to work with knots only using pictures (no equations!)
- ▶ Solution: Regular Diagrams and Reidemeister's Theorem

Regular Diagrams

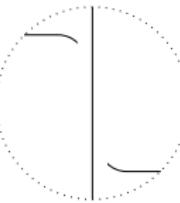
Definition (Regular Diagram)

A *regular diagram* for a knot $f : S^1 \hookrightarrow \mathbb{R}^3$ has

1. Finitely-many crossing points,
2. Only two strands interacting at any given crossing,
3. Only “transverse” crossings.



Regular Diagrams


Definition (Regular Diagram)

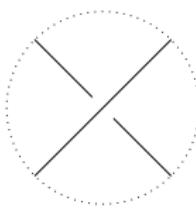
A *regular diagram* for a knot $f : S^1 \hookrightarrow \mathbb{R}^3$ has

1. Finitely-many crossing points,
2. Only two strands interacting at any given crossing,
3. Only “transverse” crossings.

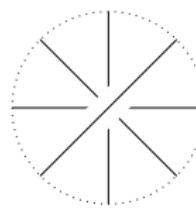
✓ Allowed

✗ Not allowed

Figure: Example of axiom 1



Regular Diagrams


Definition (Regular Diagram)

A *regular diagram* for a knot $f : S^1 \hookrightarrow \mathbb{R}^3$ has

1. Finitely-many crossing points,
2. Only two strands interacting at any given crossing,
3. Only “transverse” crossings.

✓ Allowed

✗ Not allowed

Figure: Example of axiom 2

Regular Diagrams

Definition (Regular Diagram)

A *regular diagram* for a knot $f : S^1 \hookrightarrow \mathbb{R}^3$ has

1. Finitely-many crossing points,
2. Only two strands interacting at any given crossing,
3. Only “transverse” crossings.

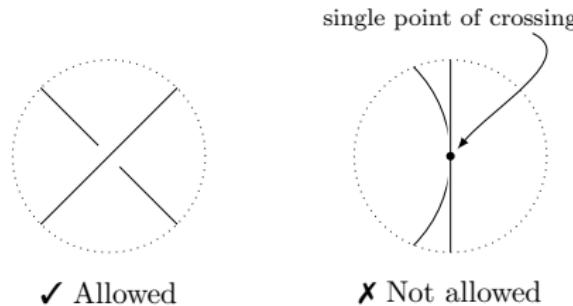


Figure: Example of axiom 3

Important note

Not every knot has a regular diagram.

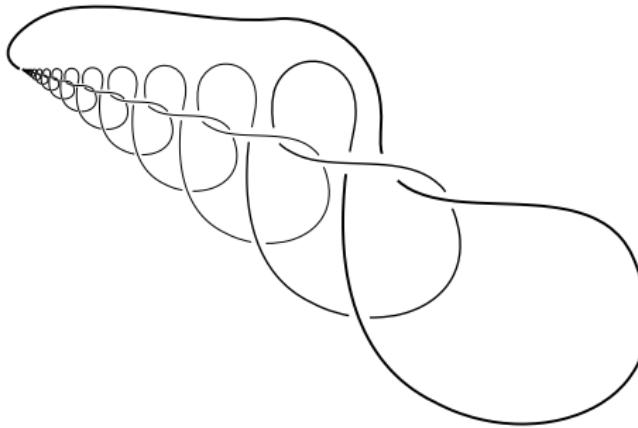
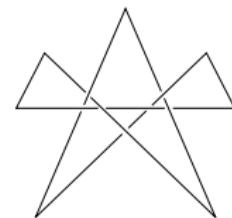
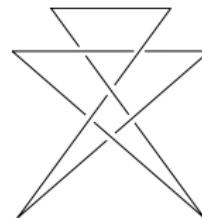
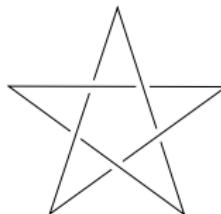
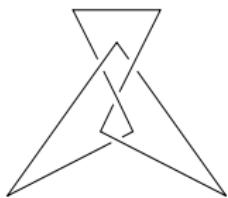


Figure: This one doesn't!

Which *do*?

Definition (Polygonal knot)

Let $f : S^1 \hookrightarrow \mathbb{R}^3$. If f is a finite union of straight-line segments, we say f is a *polygonal knot*.

Which *do*?

Definition (Polygonal knot)

Let $f : S^1 \hookrightarrow \mathbb{R}^3$. If f is a finite union of straight-line segments, we say f is a *polygonal knot*.

Example:

Which *do*?

Definition (Polygonal knot)

Let $f : S^1 \hookrightarrow \mathbb{R}^3$. If f is a finite union of straight-line segments, we say f is a *polygonal knot*.

Theorem

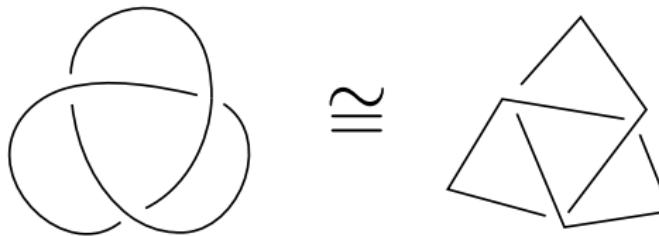
If $f : S^1 \hookrightarrow \mathbb{R}^3$ is polygonal, then f admits a regular diagram.

Proof: Use the finiteness

Tame & Wild Knots

Definition (Tameness)

Let $f : S^1 \hookrightarrow \mathbb{R}^3$. Then if f is equivalent to a polygonal knot, we say f is *tame*. If there exists no polygonal equivalent, we say f is *wild*.



Tame & Wild Knots

Definition (Tameness)

Let $f : S^1 \hookrightarrow \mathbb{R}^3$. Then if f is equivalent to a polygonal knot, we say f is *tame*. If there exists no polygonal equivalent, we say f is *wild*.

Example tame knot:

Tame & Wild Knots

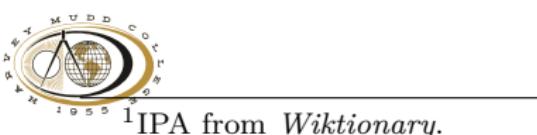
Definition (Tameness)

Let $f : S^1 \hookrightarrow \mathbb{R}^3$. Then if f is equivalent to a polygonal knot, we say f is *tame*. If there exists no polygonal equivalent, we say f is *wild*.

Important property:

- ▶ Tame knots are in equivalence classes of knots with regular diagrams.
- ▶ Why does this matter? Well...

Almost there! Equivalence of Diagrams


Definition

We say two regular diagrams D_0, D_1 are *equivalent* iff there exist a finite sequence of the following moves taking D_0 to D_1 :

Figure: The “Reidemeister moves”

Not relevant for today, but I like to denote these by \mathcal{O} (no; [no_τ]), \mathcal{W} (yu; [ju_υ^β]), and \mathcal{M} (me [me_τ]), respectively.¹

Equivalence of equivalences

Theorem (Reidemeister)

Let $f_0, f_1 : S^1 \hookrightarrow \mathbb{R}^3$ be tame, and let D_0, D_1 be regular diagrams representing the equivalence classes of f_0 and f_1 , respectively. Then $D_0 \cong D_1$ as diagrams iff $f_0 \cong f_1$ as embeddings.

Equivalence of equivalences

Theorem (Reidemeister)

Let $f_0, f_1 : S^1 \hookrightarrow \mathbb{R}^3$ be tame, and let D_0, D_1 be regular diagrams representing the equivalence classes of f_0 and f_1 , respectively. Then $D_0 \cong D_1$ as diagrams iff $f_0 \cong f_1$ as embeddings.

- ▶ Much more computationally tractable!

Equivalence of equivalences

Theorem (Reidemeister)

Let $f_0, f_1 : S^1 \hookrightarrow \mathbb{R}^3$ be tame, and let D_0, D_1 be regular diagrams representing the equivalence classes of f_0 and f_1 , respectively. Then $D_0 \cong D_1$ as diagrams iff $f_0 \cong f_1$ as embeddings.

- ▶ Much more computationally tractable!
- ▶ ... But actually still *incredibly* difficult for large examples (even an NP solution seems out of reach for now; [Lac16])

Determining Equivalence: Difficulty # 2

- ▶ Problem: Reidemeister-based algorithms are massively inefficient.
- ▶ Solution?

Determining Equivalence: Difficulty # 2

- ▶ Problem: Reidemeister-based algorithms are massively inefficient.
- ▶ Solution? Seemingly-unrelated Q: In 20 seconds or less, which of the following are true?

Determining Equivalence: Difficulty # 2

- ▶ Problem: Reidemeister-based algorithms are massively inefficient.
- ▶ Solution? Seemingly-unrelated Q: In 20 seconds or less, which of the following are true?

$$1. \quad 5(3^3 \cdot 11)^2 = 2 \cdot (72 + 33 - 8)$$

$$2. \quad -\frac{2}{(\sqrt{47} + \frac{1}{47})^3} = 47 - \frac{1}{47^2}$$

$$3. \quad 3x^4 + (x+3)(x^2 + 2x + 2) + \frac{2}{3}(x - x^2) = 2\left(x^4 + \frac{3}{2}x(x^2 - 3x)\right) + 3x$$

Determining Equivalence: Difficulty # 2

- ▶ Problem: Reidemeister-based algorithms are massively inefficient.
- ▶ Solution? Seemingly-unrelated Q: In 20 seconds or less, which of the following are true?

$$1. \quad 5(3^3 \cdot 11)^2 = 2 \cdot (72 + 33 - 8)$$

$$2. \quad -\frac{2}{(\sqrt{47} + \frac{1}{47})^3} = 47 - \frac{1}{47^2}$$

$$3. \quad 3x^4 + (x+3)(x^2 + 2x + 2) + \frac{2}{3}(x - x^2) = 2\left(x^4 + \frac{3}{2}x(x^2 - 3x)\right) + 3x$$

1. Left is odd, right is even
2. Left is negative, right is positive
3. Leading coefficients don't match

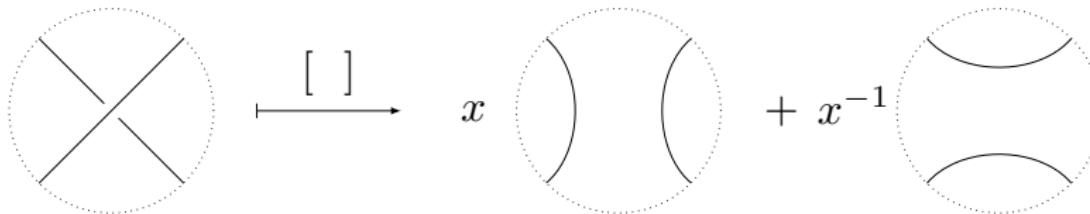
Knot Invariants

- ▶ Takeaway: Coarse heuristics can save time.
- ▶ Inspired by this:

Definition (Knot Invariant)

A *knot invariant* assigns “nice” values to knots such that equivalent knots are guaranteed to take the same value.

- ▶ Examples: Colouring invariants, knot polynomials, etc.



Example: Jones Polynomial

Definition (Jones Polynomial, Kauffman Bracket version)

Consider a formal polynomial in x derived from a regular diagram using the following recursive simplification process:

Rule 1:

Example: Jones Polynomial

Definition (Jones Polynomial, Kauffman Bracket version)

Consider a formal polynomial in x derived from a regular diagram using the following recursive simplification process:

Rule 2:

$$\left[\underbrace{\text{circle} \quad \text{circle} \quad \cdots \quad \text{circle}}_{k \text{ copies}} \right] = (-x^2 - x^{-2})^{k-1}$$

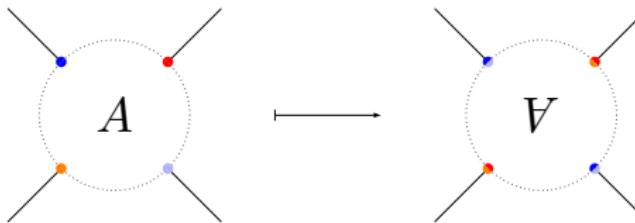
Example: Jones Polynomial

Definition (Jones Polynomial, Kauffman Bracket version)

Consider a formal polynomial in x derived from a regular diagram using the following recursive simplification process:

This yields a powerful invariant called the *Jones polynomial*.

What is the Jones polynomial “doing?”



What is the Jones polynomial “doing?”

- ▶ Possibly more fruitful question: What is it *not* doing?

Definition (Mutation)

Let D_0 be a diagram. Select some region A of D_0 such that the knot intersects ∂A in four places. “Rotate” A by “ 180° ” and call the resulting diagram D_1 . This move changing D_0 into D_1 is called *mutation*.

Cont.

- ▶ The Jones polynomial *cannot distinguish between diagrams differing by a mutation.*

Cont.

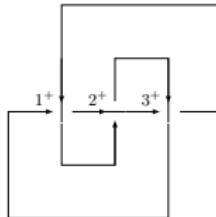
- ▶ The Jones polynomial *cannot distinguish between diagrams differing by a mutation.*
- ▶ Observation: *mutations* sort of look like an action of D_4 .
- ▶ Many similar rules cause problems with other invariants.
- ▶ Speculation: Can we get group structure here?

My attempt

- ▶ Use *combinatorial* encodings.

Definition

The *signed Gauss code* is a full encoding of an (oriented) n -crossing diagram using $6n$ symbols.


My attempt

- ▶ Use *combinatorial* encodings.

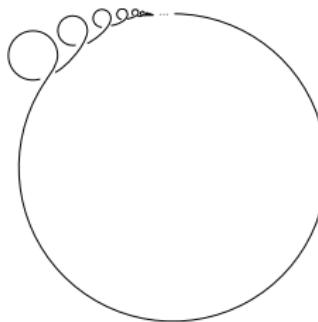
Definition

The *signed Gauss code* is a full encoding of an (oriented) n -crossing diagram using $6n$ symbols.

Example: $1_u^+, 2_o^+, 3_u^+, 1_o^+, 2_u^+, 3_o^+$

My attempt, cont.

- ▶ Reidemeister moves can be formulated as permutations on these strings
- ▶ ...As can mutations and other similar moves.
- ▶ Typical move looks like “swap the ordering of crossing 5 and crossing 7”


The problem

- ▶ What does “swap crossing 5 and crossing 7” mean if our diagram only has 3 crossings total...?
- ▶ Desire: A way to think of *all* tame knots as if they have countably-many crossings

The problem

- ▶ What does “swap crossing 5 and crossing 7” mean if our diagram only has 3 crossings total...?
- ▶ Desire: A way to think of *all* tame knots as if they have countably-many crossings
- ▶ Solution: Add them!

How?

- ▶ Can't use Reidemeister's theorem because it assumes finiteness.
Need to work directly
- ▶ Recall: Definition of equivalence

Definition (Equivalence of Embeddings in General)

Let $f_0, f_1 : X \rightarrow Y$ be embeddings. We say that f_0 is *equivalent* to f_1 if there exists a homeomorphism $h : Y \rightarrow Y$ such that $h \circ f_0 = f_1$.

- ▶ Recall: Key properties of homeomorphisms are *bijection* and *continuity both ways*

When life gives you metrics, make metricade

The idea is approximation. Lemmas we'll use:

Lemma

Let $(f_k)_{k=1}^{\infty}$ be a sequence of uniformly convergent continuous functions. Then $\lim_{k \rightarrow \infty} f_k$ is continuous.

When life gives you metrics, make metricade

The idea is approximation. Lemmas we'll use:

Lemma

Let $(f_k)_{k=1}^{\infty}$ be a sequence of uniformly convergent continuous functions. Then $\lim_{k \rightarrow \infty} f_k$ is continuous.

Lemma

Let X be compact and Y a metric space. Then if $f : X \rightarrow Y$ is bijective and continuous, it is also a homeomorphism.

When life gives you metrics, make metricade

The idea is approximation. Lemmas we'll use:

Lemma

Let $(f_k)_{k=1}^{\infty}$ be a sequence of uniformly convergent continuous functions. Then $\lim_{k \rightarrow \infty} f_k$ is continuous.

Lemma

Let X be compact and Y a metric space. Then if $f : X \rightarrow Y$ is bijective and continuous, it is also a homeomorphism.

- ▶ Idea: Use Lemma 1 to get continuity of f in hypothesis of Lemma 2

First result (kind of silly)

Corollary

Let X be compact, and for each $k \in \mathbb{N}$, let $f_k : X \rightarrow Y$ be an embedding. Suppose that the f_k converge uniformly to some f . Then if f is injective, it's also an embedding.

Example:

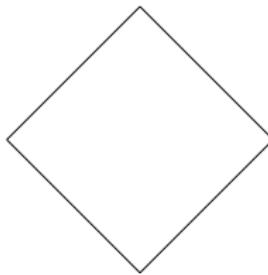


Figure: f_1

First result (kind of silly)

Corollary

Let X be compact, and for each $k \in \mathbb{N}$, let $f_k : X \rightarrow Y$ be an embedding. Suppose that the f_k converge uniformly to some f . Then if f is injective, it's also an embedding.

Example:

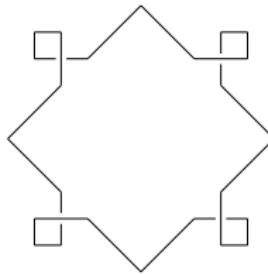


Figure: f_2

First result (kind of silly)

Corollary

Let X be compact, and for each $k \in \mathbb{N}$, let $f_k : X \rightarrow Y$ be an embedding. Suppose that the f_k converge uniformly to some f . Then if f is injective, it's also an embedding.

Example:

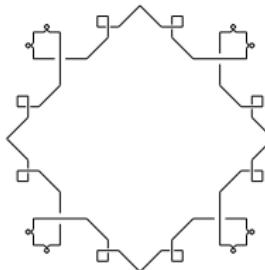


Figure: f_3

First result (kind of silly)

Corollary

Let X be compact, and for each $k \in \mathbb{N}$, let $f_k : X \rightarrow Y$ be an embedding. Suppose that the f_k converge uniformly to some f . Then if f is injective, it's also an embedding.

Example:

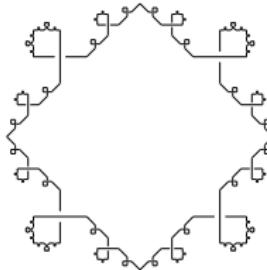


Figure: f_4

First result (kind of silly)

Corollary

Let X be compact, and for each $k \in \mathbb{N}$, let $f_k : X \rightarrow Y$ be an embedding. Suppose that the f_k converge uniformly to some f . Then if f is injective, it's also an embedding.

Example:

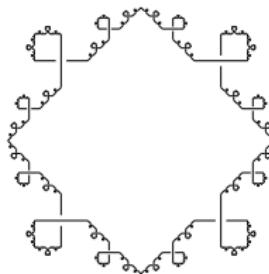


Figure: f_5

First result (kind of silly)

Corollary

Let X be compact, and for each $k \in \mathbb{N}$, let $f_k : X \rightarrow Y$ be an embedding. Suppose that the f_k converge uniformly to some f . Then if f is injective, it's also an embedding.

Example:

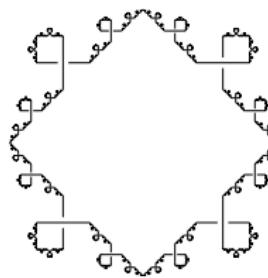


Figure: f_6

Iterative version

Theorem

Let Y be a metric space. For all $k \in \mathbb{N}$, let $h_k : Y \rightarrow Y$ be a homeomorphism and for all $n \in \mathbb{N}$, define

$$h_n = \bigcirc_{k=1}^n h_k = (h_n \circ h_{n-1} \circ \cdots \circ h_2 \circ h_1).$$

For each k let $V_k \subseteq Y$ such that h_k is identity on V_k^c . Then provided
(cont. next slide)

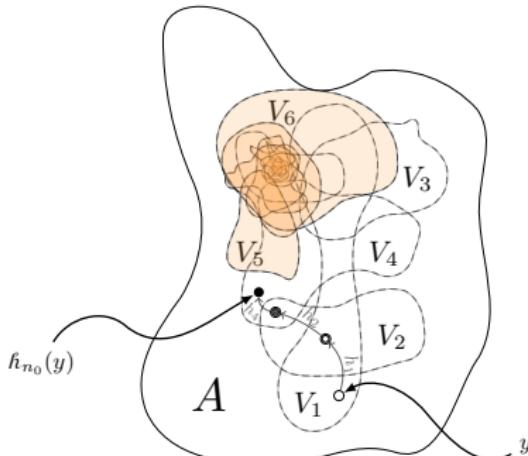
Iterative version

Theorem (cont.)

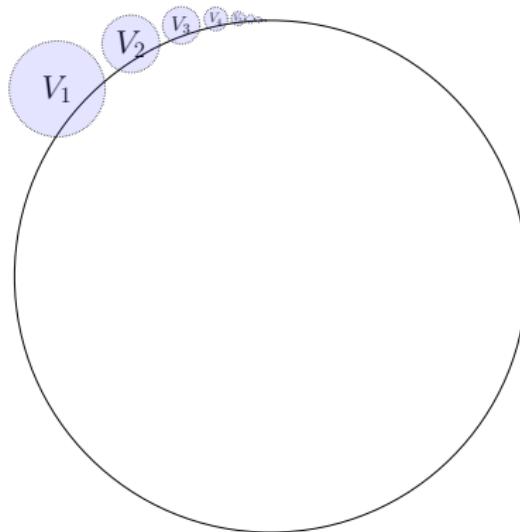
1. The V_k satisfy

$$\lim_{n \rightarrow \infty} \left(\bigcup_{k=n}^{\infty} V_k \right) = 0,$$

2. There exists a compact $A \subseteq Y$ such that

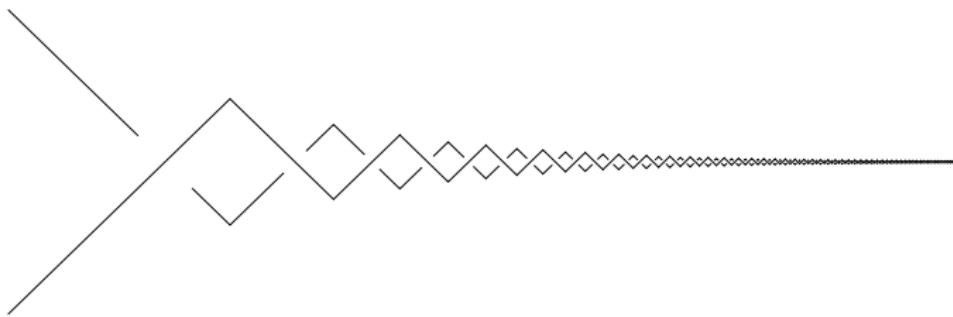

$$\left(\bigcup_{k=1}^{\infty} V_k \right) \subseteq A^\circ$$

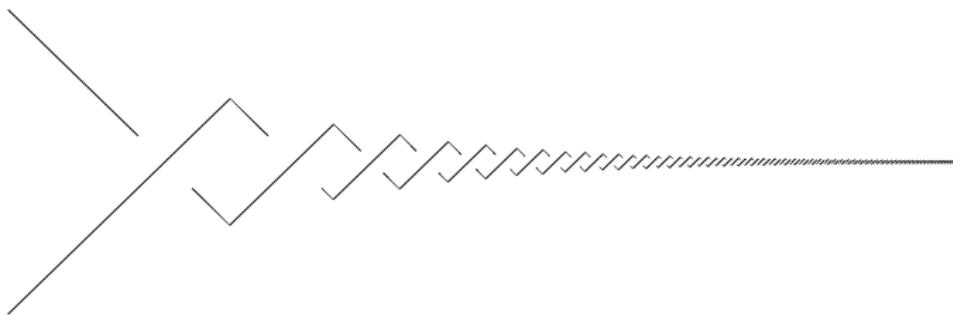
3. h_∞ defined by $h_\infty = \lim_{n \rightarrow \infty} h_n$ exists and is bijective, then h_∞ is a homeomorphism.

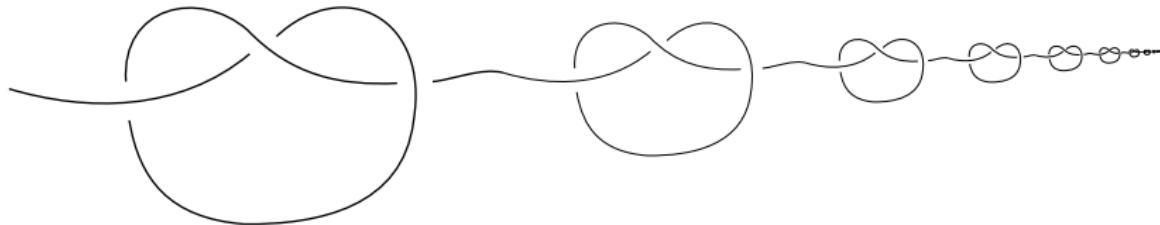


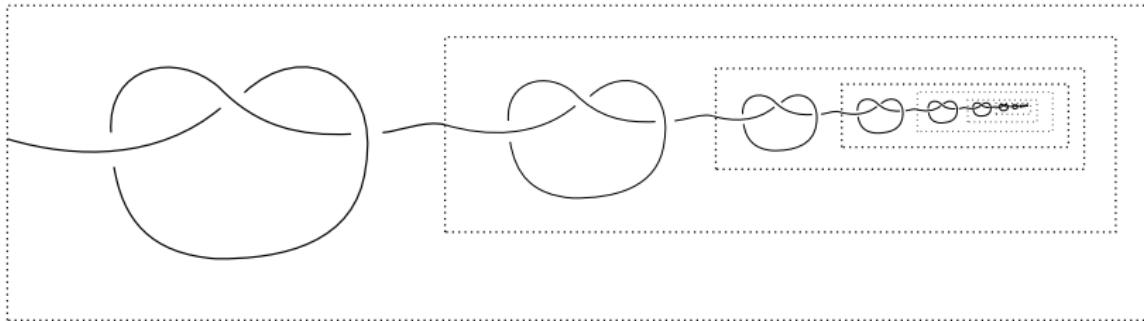
Idea of proof

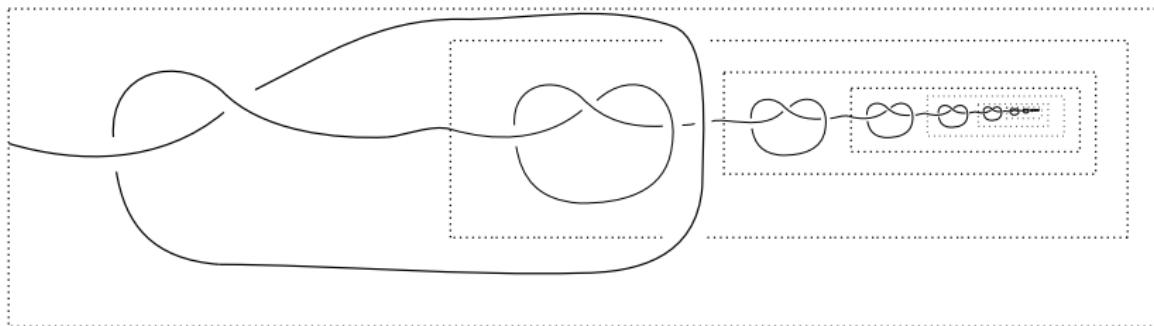
- ▶ Just need to verify uniform convergence.
- ▶ The shrinking conditions on the V_k guarantee all but one point “stops moving” past some index n_0

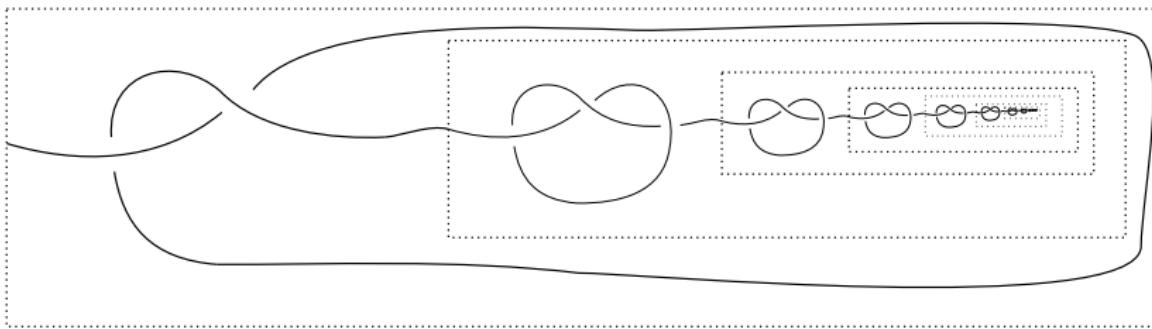

Example 1

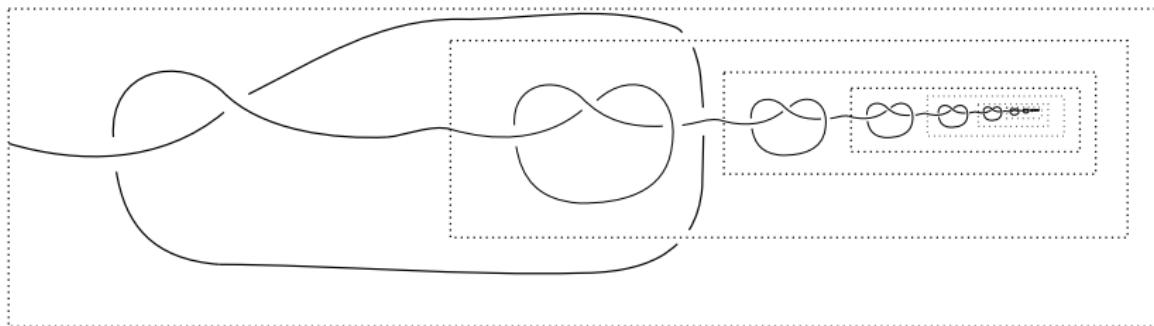

Example 1

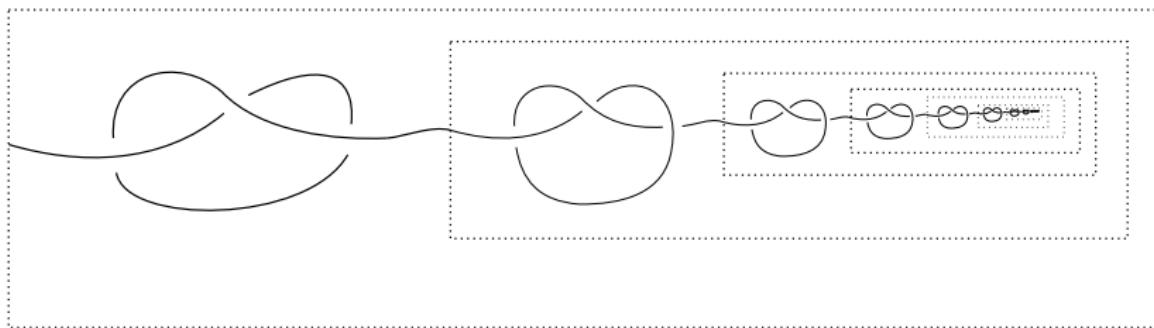

Example 2

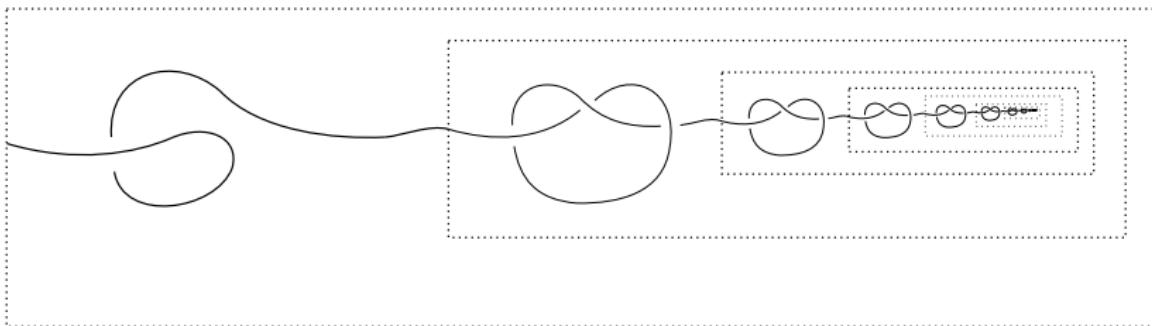

Example 3 (hard!)

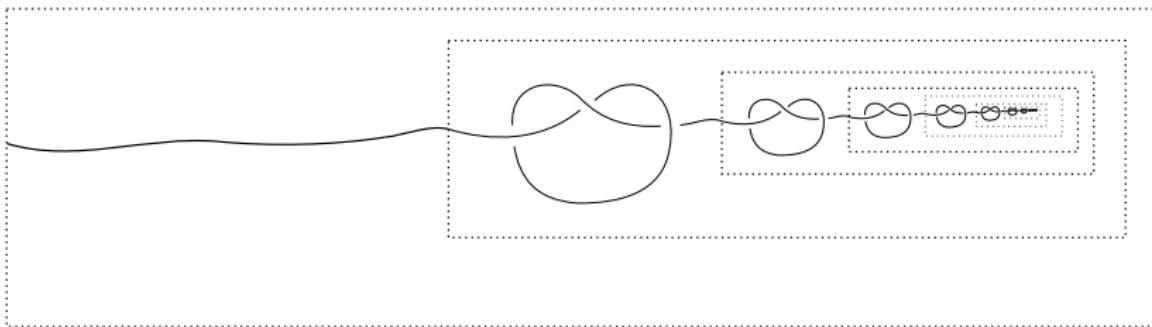

Example 4

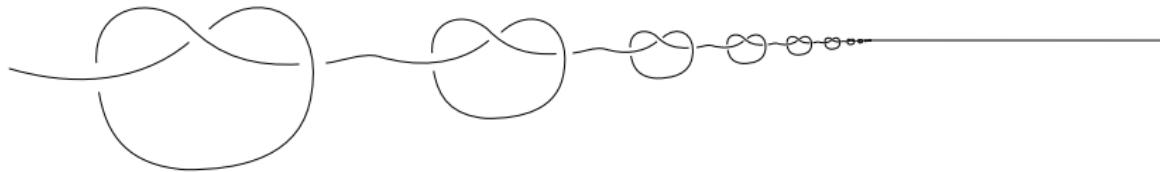

Example 4

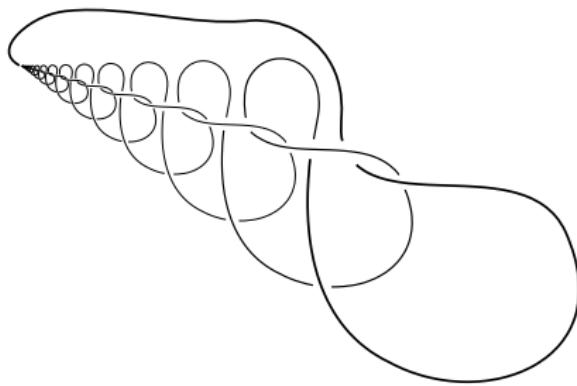

Example 4

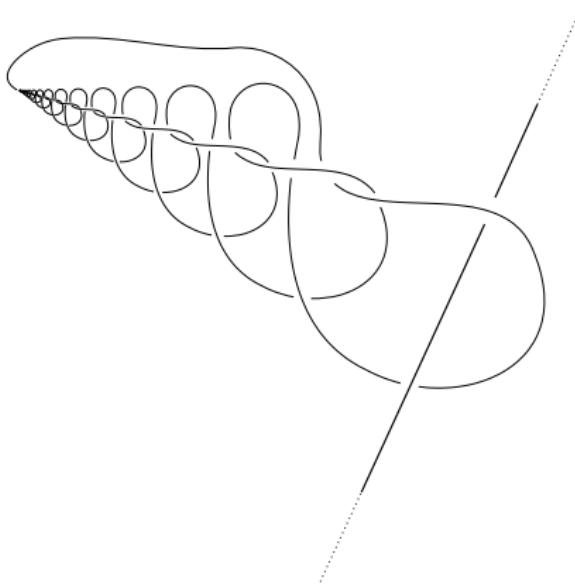

Example 4

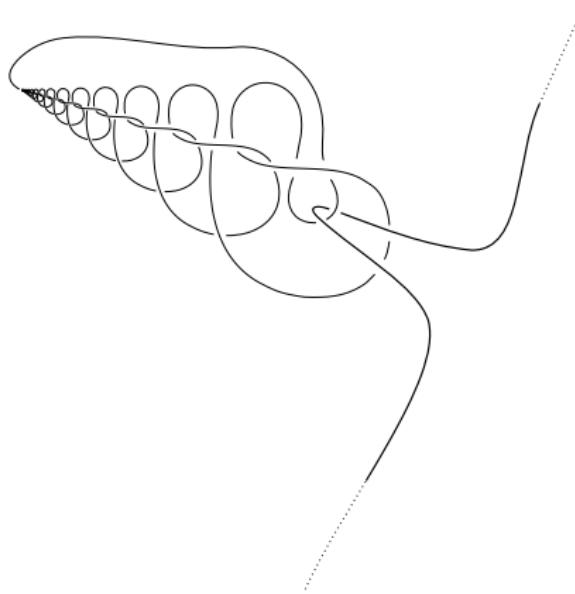

Example 4

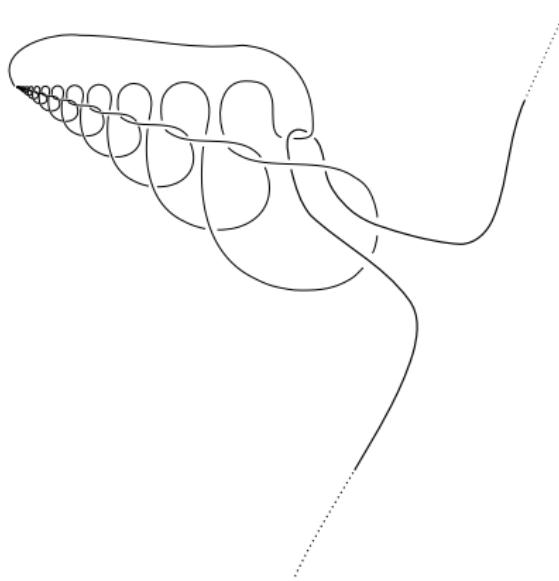

Example 4

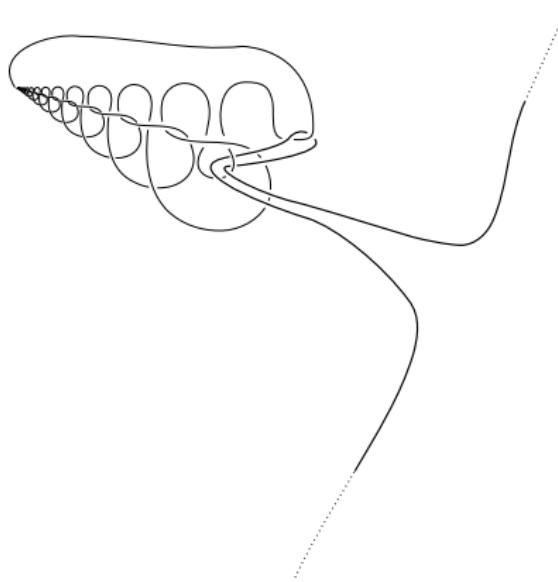

Example 4

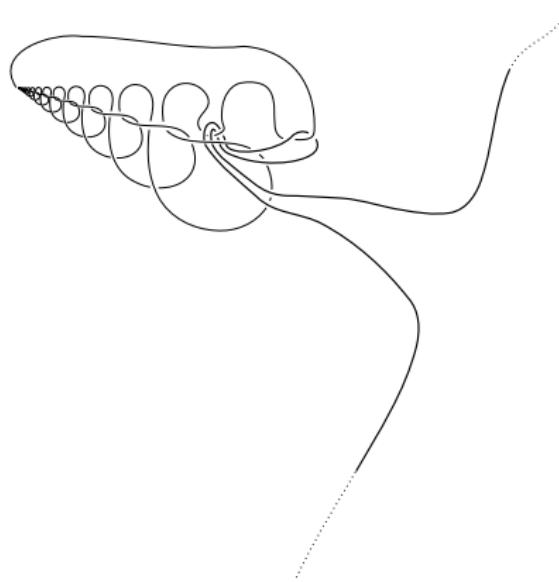

Example 4


Non-example: V_k don't decay properly


Non-example: Bijectivity lost (subtle!!)


Non-example: Bijectivity lost (subtle!!)


Non-example: Bijectivity lost (subtle!!)


Non-example: Bijectivity lost (subtle!!)

Non-example: Bijectivity lost (subtle!!)

Non-example: Bijectivity lost (subtle!!)

Towards a Countable Reidemeister Theorem

Definition (Discrete Diagram)

A *discrete diagram* for a knot $f : S^1 \hookrightarrow \mathbb{R}^3$ has

1. *Topologically discrete* crossing-points,
2. Only two strands intersecting at any given crossing,
3. Only “transverse” crossings.

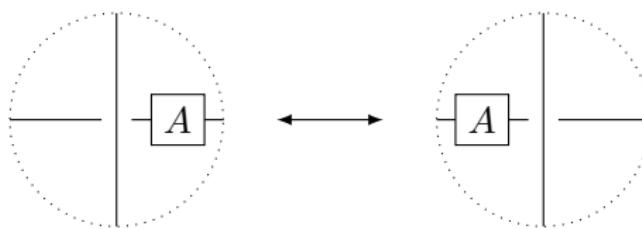
Towards a Countable Reidemeister Theorem

Definition (Discrete Diagram)

A *discrete diagram* for a knot $f : S^1 \hookrightarrow \mathbb{R}^3$ has

1. *Topologically discrete* crossing-points,
2. Only two strands intersecting at any given crossing,
3. Only “transverse” crossings.

Theorem (Countable polygonal knot)


Let $f : S^1 \hookrightarrow \mathbb{R}^3$ have a discrete diagram. Then f is equivalent to a knot comprised of a countable union of straight line segments.

Proof: Unpleasant!

Conjecture!

Define the *extended Reidemeister moves* to be the original set together with a fourth move

where in the above, A is a compact set whose interior remains fixed relative to its boundary.

Let $f_0, f_1 : S^1 \hookrightarrow \mathbb{R}^3$ admit discrete diagrams D_0, D_1 . Then $f_1 \cong f_2$ iff there exists a countable sequence of Reidemeister moves satisfying (slightly-modified versions of) the decay conditions on the V_k that take D_0 to D_1 .

References I

- Forest D. Kobayashi, *Where the Wild Knots Are*, Bachelor's thesis, Harvey Mudd College, Claremont, CA, May 2020.
- Forest Kobayashi, *Uniform Convergence and Knot Equivalence*, arXiv (2021).
- Marc Lackenby, *Elementary knot theory*, arXiv (2016).

