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Takeaway
—
Objective: Find a curve f : [0,1] —  minimizing
90) = | dew. f(0.1) do
subject to length(f) < ¢.
_

Some questions:
» Can we use dP instead of d? v Sure.

> We're really “filling” the uniform measure dw. Can we try other
probability measures? v Sure, with finite p-th moment.

» Can we work with f: X — Q where X CR™, Q CR", m < n?
v Sure, but some care required.

The University of British Columbia
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Other Dimensions

r B
Example: If f : [0,1]2 — [0,1]3, what should we pick to be the
constraint?

_

» Maybe surface area? X Unfortunately, no.
> Let g:[0,1] — [0,1]® and take f(z1,72) = g(z1)
» ¢ can still “fill” space while Area(f) = 0:
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Choosing a Constraint C(f)

Want C(f) to measure “complexity” of f:
» If f nonconstant, C(f) >0
m prev slide: m-dimensional Hausdorff measure fails
» (Optional): If f highly oscillatory, C(f) > 0
m penalizes effectively-1d solutions

m relevance in applications

-
Choice:
C(f) = Ifllwracx0

(assume kg > m for Sobolev inequality)
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Revised Problem Statement
[~ 1

Given:
> X CR™ QCR"
> p e P(Q) (measure to approximate)
> (>0 (budget)
> p > 1 (weight of far-away points)
> Some technical hypotheses
Minimize:

9o(f) = / P (w, f) dp(w)

Subject to:

1 ey < £
L _
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Related Work

» Quantization problem for measures (e.g. [Tacl7])
m Optimal approximation of p by Dirac masses
m m =0, C = # of points

» Principal Curves ([KS17], [LS21], [DF20])
m Like our problem for m = 1, C(f) = length(f)

m Common to use soft penalty:

9o (f) = 9o (f) + XC(f)

» Unequal-dimensional OT ([MP19])

The University of British Columbia
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Connection to OT
» Wasserstein Cost: Given p € P(X),v € P(Y) (X, Y CR")

YET (1,v)

1/p
me,u)( wi [ e d’r(r,y))
XXY

> W,(u,v) gives metric that respects “structure” of R”
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Connection to OT
» Wasserstein Cost: Given p € P(X),v € P(Y) (X, Y CR")

1/p
me,u)( wi [ e d’r(r,y))
XXY

YET (1,v)

> W,(u,v) gives metric that respects “structure” of R”

> {, ~ measures closeness of f and p:

Proposition: For all f,

Go(f)= _inf  WZ(pv).

veP(f(X))
L _

» Analogous to how d(p, A) = inf,ec 4 d(p, a).
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Flavor of Problem: ¢,

1. g, nonconvex

(a) fo () fs () fn

2. ¢, nonconcave as well

3. But, jointly weakly continuous in f and p
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» 27 order term makes local modifications very hard.
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(a) f (b) Desired perturbation  (c) Best we can do
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Flavor of Problem: C(f)

Given € extra budget, can we improve J?

» 27 order term makes local modifications very hard.

» Can’t just “extend” f past 0f(X

supp(p)

Q

supp(p)

Q

(a) F(X)

(b) Extended f(X)
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Summary of Main Results

1. Optimizers?
m Exist under mild hypotheses
m Generally nonunique (e.g. if X, Q have symmetries)

2. Relationship between J and £7
m J continuous in /¢
m J (trivially) nonincreasing..more than this, hard to say.
m Coarse asymptotic estimates from covering numbers

m Important tool: Can find directional derivative of ¢, in

C(f(X);R™).
3. Discretization?

m Yes; nice consistency results

of British Columbia
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Definining a “Gradient:” Disintegration of Measures

» Given v € P(X x Y) with marginals u, v:
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Definining a “Gradient:” Disintegration of Measures

» “Disintegrate” v via projection onto z-axis:

> Write p as (mx)u~ (“projection” of v onto z axis)

» For each x, let v, be the “slice” of « living on 77;(1 (). Then

/Xxyf(a:,y) dy(z,y) = /X </wxl<a:) f(z,y) d%(y)> d(mx) s (@)
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Definining a “Gradient”

—
Define a Gradient: Let 7y : Q — f(X) be closest point projec-
tion. Disintegrate p under 7; into ({py}uef(X)’ v,) and let

B =p [ | (@-pl-? dpy(e).
© ({wh)
L _
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Fyy) =p / (@ — )lw — yP~? dpy(w).
=7 ()

L _
» Trivially also a function of = by taking F,(z) = F,(f(v)).
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Definining a “Gradient”

—
Define a Gradient: Let 7y : Q — f(X) be closest point projec-

tion. Disintegrate p under 7; into ({py}uef(X)’ v,) and let

B =p [ | (@-pl-? dpy(e).
. ({y})
L _

» Trivially also a function of = by taking F,(z) = F,(f(v)).
> (F},, &), gives first variation in direction &.
» F, can be discontinuous even when

" fEO®(X;Q)

m f(X) is a C' manifold
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Example of F}, discontinuous with f € C*(X;Q)

Let f smoothly parametrize the graph of |z| with £ a diamond.
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Example of F}, discontinuous with f(X) a C'-manifold

0.5 1

Let f(x) = (z,23sin(1/z)) with Q a square.
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Example of F), discontinuous with f(X) a C'-manifold

Let f(x) = (z,23sin(1/z)) with Q a square(not to scale!).

The University of British Columbia




Main Results

[e]e]e]e]e] lele)

Local Modification Theorems

.
Theorem (A): Suppose f € C(X;Q) is v,-a.e. injective and & :
f(X) — R™ is cont. except perhaps on a v,-null closed set. Then

iy 9o(f + si) — %) _ /X (Fp(x), €(x)) dv,(f(x))

-
Theorem (B): Suppose f € C(X;Q) and £ € C(f(X); ). Then

- Yp(f+e8) —9(f) _ _
lim = /Y<F

e—0 £

The University of British Columbia




Main Results

[e]e]e]e]e] lele)

Local Modification Theorems
» Version A: can change topology,  injectivity hypotheses on f

» Version B: can’t change topology, no injectivity hypotheses on f

>@>@ﬁ@

) Initial f ) An f. for Version A ) An f. for Version B
) Another initial f ) An fc for Version A ) An f. for Version B
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Local Modifications, Continued

» Challenge to gradient flows: Since F}, not even guaranteed to be
continuous, f + £F, might not be W*4(X;Q)

» However...

-
Theorem: Suppose v,({F, # 0}) > 0. Then there exists £ €
C>®(f(X);Q) and € > 0 such that f + &£ € W*9(X;Q) and

lim 9p(f +8) — 9n(f) > 0.
e—0 £
L _
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Special Case: Strict Monotonicity!

Proposition: With very mild assumptions, when m = 1, n = 2,
and k = 1, then if f is an optimizer for budget ¢, then

vp({Fp # 0}) > 0.
L _

Sketch (Contradiction):
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Special Case: Strict Monotonicity!

Proposition: With very mild assumptions, when m = 1, n = 2,
and k = 1, then if f is an optimizer for budget ¢, then

vp({Fp # 0}) > 0.
L _

Sketch (Contradiction):
» Consider perturbation —f.
> C((1—e)f)=(1—¢)C(f). So we recover O(e) budget.

» Perturbation is continuous on f(X), so local modification
theorem gives §,(f —ef) — 9p(f) = O(£?)
» Adding a “spike” in the right place changes objective by O(g%/?)
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Computational Things
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Consistency Results

» Discretizing p:

Proposition: Let py be an empirical measure for p, and let
fn be associated f-optimizers. Then almost surely, every limit
point of {fx} is an ¢-optimizer for p.

_
» Discretizing f:

m “Discrete” version of F), given by Voronoi cells

m Somewhat intricate simulation algorithms (not included in paper)
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Some Simulations
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Some Simulations
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Applications
» Routing problems
» Catalyst design

» Nonlinear Dimensional Reduction

» Generative Learning




Conclusion

e0

Thank you!
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