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The Problem

Given:
1. A region Ω ⊆ R2,
2. A finite length ` of rope,

Find:
I The rope shape that best

“fills” Ω.
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Takeaway

Objective: Find a curve f : [0, 1] → Ω minimizing

J(f) =
ˆ

Ω
d(ω, f([0, 1])) dω

subject to length(f) ≤ `.

Some questions:
I Can we use dp instead of d? 3 Sure.
I We’re really “filling” the uniform measure dω. Can we try other

probability measures? 3 Sure, with finite p-th moment.
I Can we work with f : X → Ω where X ⊆ Rm, Ω ⊆ Rn, m < n?

3 Sure, but some care required.
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Other Measures

Example: Choose ρ ∈ P(Ω) more concentrated on the horizontal:

ρ ∼ N (0; [σ2
X 0; 0 σ2

Y ]) σY � σX
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Other Dimensions

Example: If f : [0, 1]2 → [0, 1]3, what should we pick to be the
constraint?

I Maybe surface area?

7 Unfortunately, no.
I Let g : [0, 1] → [0, 1]3 and take f(x1, x2) = g(x1)
I g can still “fill” space while Area(f) = 0:
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Choosing a Constraint C(f)
Want C(f) to measure “complexity” of f :
I If f nonconstant, C(f) > 0

prev slide: m-dimensional Hausdorff measure fails

I (Optional): If f highly oscillatory, C(f) � 0
penalizes effectively-1d solutions

relevance in applications

Choice:
C(f) = ‖f‖W k,q(X;Ω)

(assume kq > m for Sobolev inequality)
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Revised Problem Statement

Given:
I X ⊆ Rm, Ω ⊆ Rn

I ρ ∈ P(Ω) (measure to approximate)
I ` ≥ 0 (budget)
I p ≥ 1 (weight of far-away points)
I Some technical hypotheses

Minimize:
Jp(f) =

ˆ
Ω

dp(ω, f) dρ(ω)

Subject to:
‖f‖W k,q(X;Ω) ≤ `
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Related Work
I Quantization problem for measures (e.g. [Iac17])

Optimal approximation of ρ by Dirac masses

m = 0, C = # of points

I Principal Curves ([KS17], [LS21], [DF20])
Like our problem for m = 1, C(f) = length(f)

Common to use soft penalty:

Jλ
p (f) = Jp(f) + λC(f)

I Unequal-dimensional OT ([MP19])
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Connection to OT
I Wasserstein Cost: Given µ ∈ P(X), ν ∈ P(Y ) (X, Y ⊆ Rn)

Wp(µ, ν) =
(

inf
γ∈Γ(µ,ν)

ˆ
X×Y

|x − y|p dγ(x, y)
)1/p

I Wp(µ, ν) gives metric that respects “structure” of Rn

I Jp ≈ measures closeness of f and ρ:

Proposition: For all f ,

Jp(f) = inf
ν∈P(f(X))

Wp
p(ρ, ν).

I Analogous to how d(p, A) = infa∈A d(p, a).
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Flavor of Problem: Jp

1. Jp nonconvex

(a) f0 (b) f.5 (c) f1

2. Jp nonconcave as well

3. But, jointly weakly continuous in f and ρ
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Flavor of Problem: C(f)
Given ε extra budget, can we improve J?

I 2nd-order term makes local modifications very hard.
I Can’t just “extend” f past ∂f(X)…

supp(ρ)
Ω

(a) f(X)

supp(ρ)
Ω

(b) Extended f(X)
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Summary of Main Results
1. Optimizers?

Exist under mild hypotheses

Generally nonunique (e.g. if X, Ω have symmetries)

2. Relationship between J and `?
J continuous in `

J (trivially) nonincreasing…more than this, hard to say.

Coarse asymptotic estimates from covering numbers

Important tool: Can find directional derivative of Jp in
C(f(X);Rn).

3. Discretization?
Yes; nice consistency results
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Definining a “Gradient:” Disintegration of Measures
I Given γ ∈ P(X × Y ) with marginals µ, ν:
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I Write µ as (πX)#γ (“projection” of γ onto x axis)
I For each x, let γx be the “slice” of γ living on π−1

X (x). Then
ˆ

X×Y

f(x, y) dγ(x, y) =
ˆ

X

(ˆ
π−1

X
(x)

f(x, y) dγx(y)
)

d(πX)#γ(x)
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Definining a “Gradient”

Define a Gradient: Let πf : Ω → f(X) be closest point projec-
tion. Disintegrate ρ under πf into ({ρy}y∈f(X), νρ) and let

Fp(y) = p

ˆ
π−1

f
({y})

(ω − y)|ω − y|p−2
dρy(ω).

I Trivially also a function of x by taking Fp(x) = Fp(f(y)).
I 〈Fp, ξ〉L2 gives first variation in direction ξ.
I Fp can be discontinuous even when

f ∈ C∞(X; Ω)

f(X) is a C1 manifold
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Example of Fp discontinuous with f ∈ C∞(X; Ω)
Let f smoothly parametrize the graph of |x| with Ω a diamond.
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Example of Fp discontinuous with f(X) a C1-manifold
Let f(x) = (x, x3 sin(1/x)) with Ω a square.
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Example of Fp discontinuous with f(X) a C1-manifold
Let f(x) = (x, x3 sin(1/x)) with Ω a square(not to scale!).
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Local Modification Theorems

Theorem (A): Suppose f ∈ C(X; Ω) is νρ-a.e. injective and ξ :
f(X) → Rn is cont. except perhaps on a νρ-null closed set. Then

lim
ε→0

Jp(f + εξ) − Jp(f)
ε

= −
ˆ

X

〈Fp(x), ξ(x)〉 dνρ(f(x))

Theorem (B): Suppose f ∈ C(X; Ω) and ξ ∈ C(f(X); Ω). Then

lim
ε→0

Jp(f + εξ) − Jp(f)
ε

= −
ˆ

Y

〈Fp(y), ξ(y)〉 dνρ(y)
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Local Modification Theorems
I Version A: can change topology, injectivity hypotheses on f

I Version B: can’t change topology, no injectivity hypotheses on f

(a) Initial f (b) An fε for Version A (c) An fε for Version B

(d) Another initial f (e) An fε for Version A (f) An fε for Version B
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Local Modifications, Continued
I Challenge to gradient flows: Since Fp not even guaranteed to be

continuous, f + εFp might not be W k,q(X; Ω)
I However…

Theorem: Suppose νρ({Fp 6= 0}) > 0. Then there exists ξ ∈
C∞(f(X); Ω) and ε > 0 such that f + εξ ∈ W k,q(X; Ω) and

lim
ε→0

Jp(f + εξ) − Jp(f)
ε

> 0.
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Special Case: Strict Monotonicity!

Proposition: With very mild assumptions, when m = 1, n = 2,
and k = 1, then if f is an optimizer for budget `, then

νρ({Fp 6= 0}) > 0.

Sketch (Contradiction):

I Consider perturbation −f .
I C((1 − ε)f) = (1 − ε)C(f). So we recover O(ε) budget.
I Perturbation is continuous on f(X), so local modification

theorem gives Jp(f − εf) − Jp(f) = O(ε2)
I Adding a “spike” in the right place changes objective by O(ε3/2)
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Consistency Results
I Discretizing ρ:

Proposition: Let ρ̂N be an empirical measure for ρ, and let
fN be associated `-optimizers. Then almost surely, every limit
point of {fN } is an `-optimizer for ρ.

I Discretizing f :
“Discrete” version of Fp given by Voronoi cells

Somewhat intricate simulation algorithms (not included in paper)
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Some Simulations
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Some Simulations
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Applications
I Routing problems
I Catalyst design
I Nonlinear Dimensional Reduction
I Generative Learning
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Thank you!
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