

Constrained Wasserstein Fitting Problems

Or: “How Best to Fill a Region with a Curve?”

Forest Kobayashi

The University of British Columbia

Tuesday, November 14th, 2023

The Problem

Given:

1. A region $\Omega \subseteq \mathbb{R}^2$,
2. A finite length ℓ of rope,

Find:

- ▶ The rope shape that best “fills” Ω .

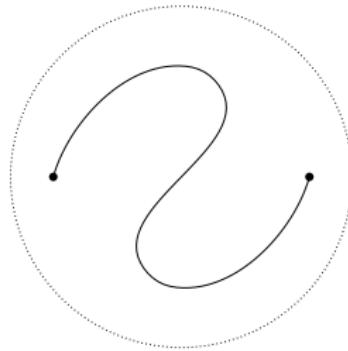
The Problem

Given:

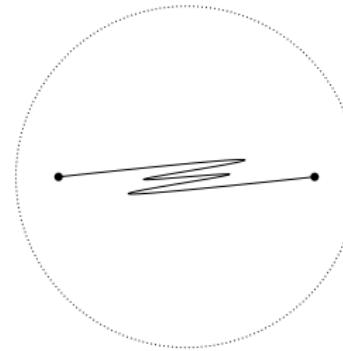
1. A region $\Omega \subseteq \mathbb{R}^2$,
2. A finite length ℓ of rope,

Find:

- ▶ The rope shape that best “fills” Ω .



(a) A “good” filling



(b) A “bad” filling

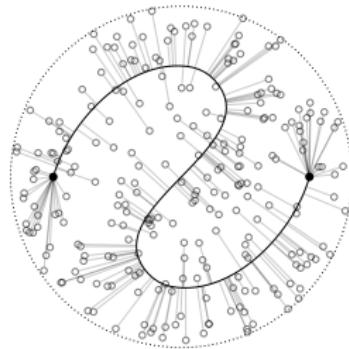
The Problem

Given:

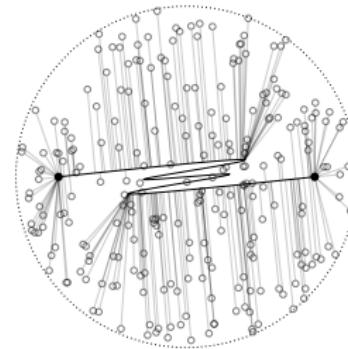
1. A region $\Omega \subseteq \mathbb{R}^2$,
2. A finite length ℓ of rope,

Find:

- ▶ The rope shape that best “fills” Ω .



(a) A “good” filling



(b) A “bad” filling

Takeaway

Objective: Find a curve $f : [0, 1] \rightarrow \Omega$ minimizing

$$\mathcal{J}_p(f) = \int_{\Omega} d(\omega, f([0, 1])) \ d\omega$$

subject to $\text{length}(f) \leq \ell$.

Takeaway

Objective: Find a curve $f : [0, 1] \rightarrow \Omega$ minimizing

$$\mathcal{J}_p(f) = \int_{\Omega} d(\omega, f([0, 1])) \ d\omega$$

subject to $\text{length}(f) \leq \ell$.

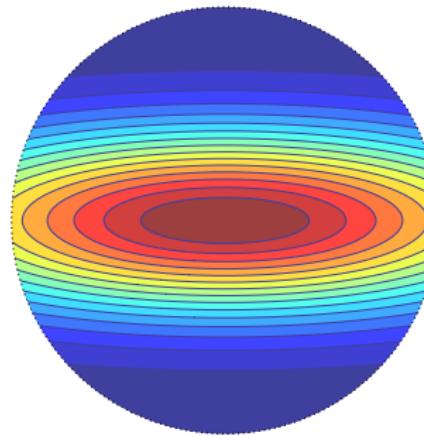
Important point:

- ▶ More proper to say we want to “fill” the Lebesgue measure $d\omega$ on Ω rather than saying we want to fill Ω .
- ▶ What if we try other measures?

Other Measures

Example: Choose $\rho \in \mathcal{P}(\Omega)$ more concentrated on the horizontal:

$$\rho \sim \mathcal{N}(0; [\sigma_X^2 \ 0; \ 0 \ \sigma_Y^2]) \quad \sigma_Y \ll \sigma_X$$

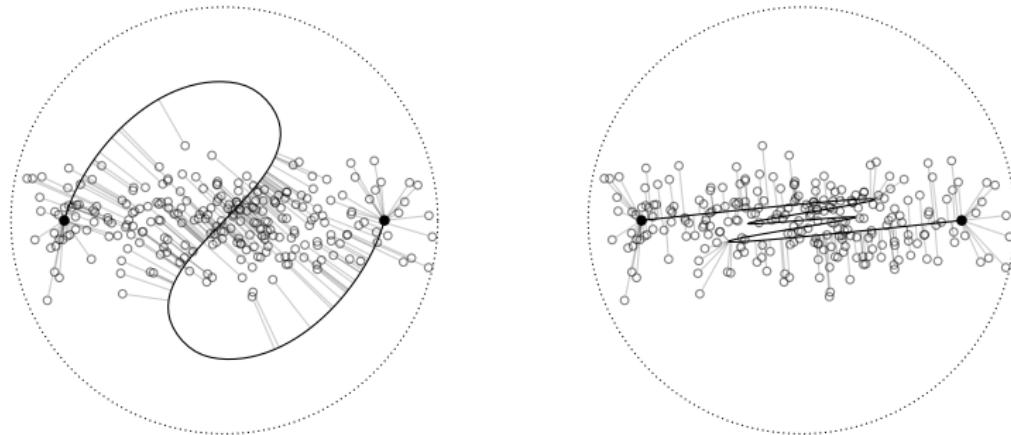


Other Measures

Example: Choose $\rho \in \mathcal{P}(\Omega)$ more concentrated on the horizontal:

$$\rho \sim \mathcal{N}(0; [\sigma_X^2 \ 0; \ 0 \ \sigma_Y^2])$$

$$\sigma_Y \ll \sigma_X$$



Revised Objective

Objective: Given $\rho \in \mathcal{P}(\Omega)$, find $f : [0, 1] \rightarrow \Omega$ minimizing

$$\mathcal{J}_p(f) = \int_{\Omega} d(\omega, f([0, 1])) \ d\rho(\omega)$$

subject to $\text{length}(f) \leq \ell$.

Revised Objective

Objective: Given $\rho \in \mathcal{P}(\Omega)$, find $f : [0, 1] \rightarrow \Omega$ minimizing

$$\mathcal{J}_p(f) = \int_{\Omega} d(\omega, f([0, 1])) \ d\rho(\omega)$$

subject to $\text{length}(f) \leq \ell$.

Another important point:

- ▶ Does f need to be 1d? (No.)
- ▶ What should we make our constraint when f is e.g. a surface?

Choosing a Constraint $\mathcal{C}(f)$

Want $\mathcal{C}(f)$ to measure “complexity” of f :

- ▶ If f nonconstant, $\mathcal{C}(f) > 0$
 - m -dimensional Hausdorff measure fails here!

Choosing a Constraint $\mathcal{C}(f)$

Want $\mathcal{C}(f)$ to measure “complexity” of f :

- ▶ If f nonconstant, $\mathcal{C}(f) > 0$
 - m -dimensional Hausdorff measure fails here!
- ▶ (Optional): If f highly oscillatory, $\mathcal{C}(f) \gg 0$

Also want \mathcal{C} to give nice analytic properties.

Choosing a Constraint $\mathcal{C}(f)$

Want $\mathcal{C}(f)$ to measure “complexity” of f :

- ▶ If f nonconstant, $\mathcal{C}(f) > 0$
 - m -dimensional Hausdorff measure fails here!
- ▶ (Optional): If f highly oscillatory, $\mathcal{C}(f) \gg 0$

Also want \mathcal{C} to give nice analytic properties.

Choice:

$$\mathcal{C}(f) = \|f\|_{W^{k,q}(X;\Omega)}$$

(assume $kq > m$ for Sobolev inequality)

Problem Statement

Given:

- ▶ $\rho \in \mathcal{P}(\Omega)$
- ▶ $\ell \geq 0$
- ▶ $p \geq 1$
- ▶ Some technical hypotheses

Minimize:

$$\mathcal{J}_p(f) = \int_{\Omega} \inf_{x \in X} |\omega - f(x)|^p \, d\rho(\omega)$$

Subject to:

$$\|f\|_{W^{k,q}(X;\Omega)} \leq \ell$$

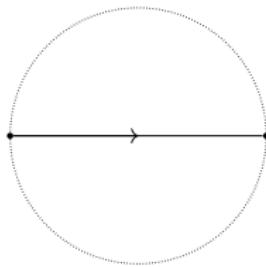
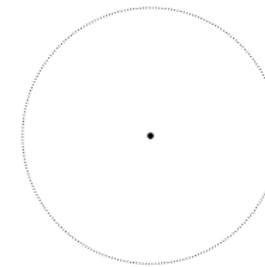
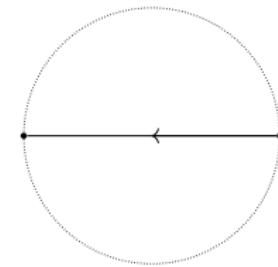
Shorthand: $J(\ell) = \inf_{\mathcal{C}(f) \leq \ell} \mathcal{J}_p(f)$

Summary of Main Results

1. Connection to OT?
 - Exist under mild hypotheses
 - Generally nonunique (e.g. if X, Ω have symmetries)
2. Optimizers?
 - J continuous in ℓ
 - J (trivially) nondecreasing...more than this, hard to say.
 - Coarse asymptotic estimates from covering numbers
3. Relationship between J and ℓ ?
 - J continuous in ℓ
 - J (trivially) nondecreasing...more than this, hard to say.
 - Coarse asymptotic estimates from covering numbers
4. Important tool: Can find gradient of \mathcal{J}_p in $C(f(X); \mathbb{R}^n)$.

Flavor of Problem: \mathcal{J}_p

1. \mathcal{J}_p nonconvex

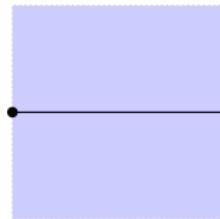
(a) f_0 (b) $f_{.5}$ (c) f_1

2. \mathcal{J}_p nonconcave as well
3. But, jointly weakly continuous in f and ρ

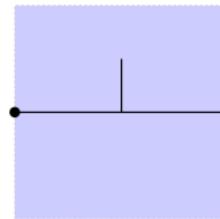
Flavor of Problem: $\mathcal{C}(f)$

Given ε extra budget, can we improve J ?

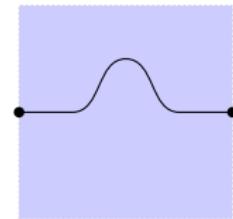
- ▶ 2nd-order term makes local modifications very hard.



(a) f



(b) Desired perturbation



(c) Best we can do

- ▶ Can't just "extend" f past $\partial f(X)$...

Flavor of Problem: $\mathcal{C}(f)$

Given ε extra budget, can we improve J ?

- ▶ 2nd-order term makes local modifications very hard.
- ▶ Can't just "extend" f past $\partial f(X)$...



(a) $f(X)$

(b) Extended $f(X)$

Performing Local Modifications

Define a Gradient: Let $\pi_f : \Omega \rightarrow f(X)$ be closest point projection. Disintegrate ρ under π_f into $(\{\rho_y\}_{y \in f(X)}, \nu_\rho)$ and let

$$F_p(y) = p \int_{\pi_f^{-1}(\{y\})} (\omega - y) |\omega - y|^{p-2} d\rho_y(\omega).$$

- ▶ F_p can be discontinuous even when
 - $f \in C^\infty(X; \Omega)$
 - $f(X)$ is a C^1 manifold
- ▶ Still... $\langle F_p, \xi \rangle_{L^2}$ gives first variation in direction ξ .

Local Modification Theorems

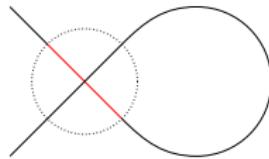
Two versions:

- ▶ Version A: can change topology, harder-to-verify hypotheses
- ▶ Version B: can't change topology, easy-to-verify hypotheses

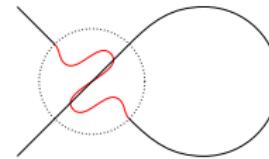
Local Modification Theorems

Two versions:

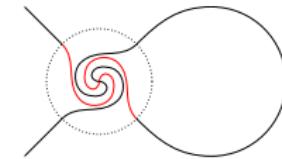
- ▶ Version A: can change topology, harder-to-verify hypotheses
- ▶ Version B: can't change topology, easy-to-verify hypotheses



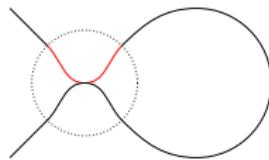
(a) Initial f



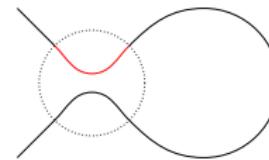
(b) An f_ε for Version A



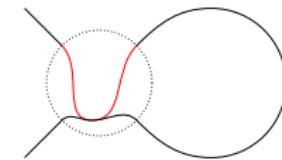
(c) An f_ε for Version B



(d) Another initial f



(e) An f_ε for Version A



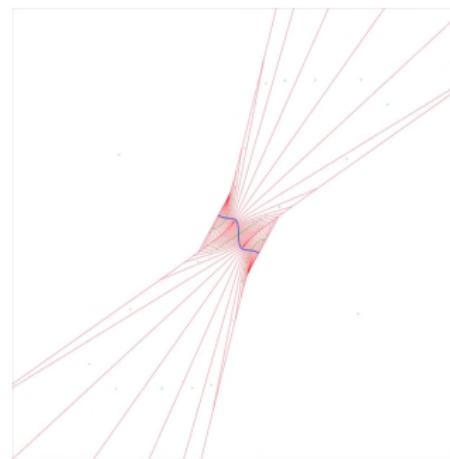
(f) An f_ε for Version B

Local Modifications, Continued

- ▶ Even though F_p potentially highly irregular...
- ▶ As long as $F_p \neq 0$ on a ν_ρ -non-null set, can find *smooth* perturbation improving \mathcal{J}_p !

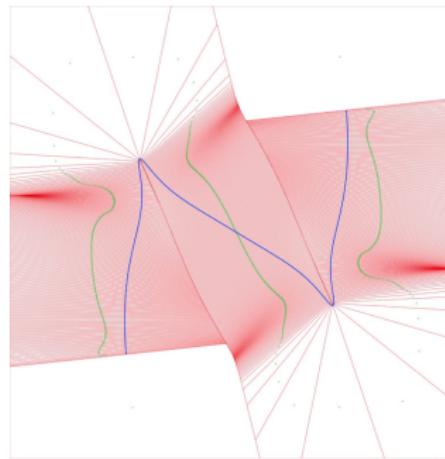
Some Simulations

- Consistency results: Discretizing ρ, f recovers continuous solutions as resolution $\rightarrow \infty$



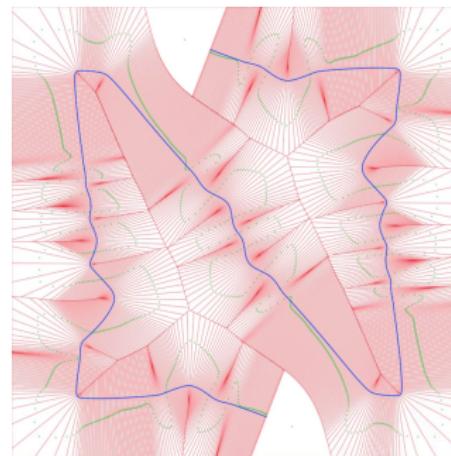
Some Simulations

- Consistency results: Discretizing ρ, f recovers continuous solutions as resolution $\rightarrow \infty$



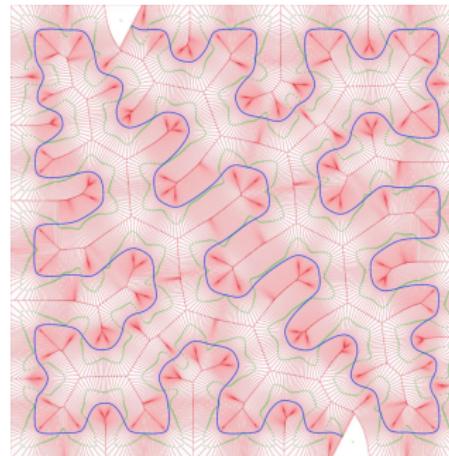
Some Simulations

- Consistency results: Discretizing ρ, f recovers continuous solutions as resolution $\rightarrow \infty$



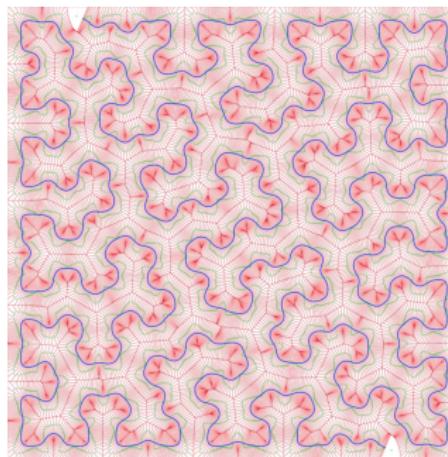
Some Simulations

- Consistency results: Discretizing ρ, f recovers continuous solutions as resolution $\rightarrow \infty$



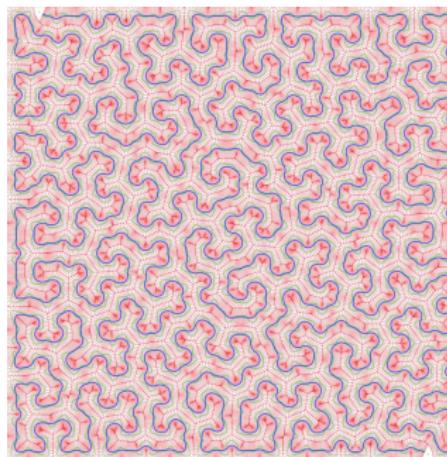
Some Simulations

- ▶ Consistency results: Discretizing ρ, f recovers continuous solutions as resolution $\rightarrow \infty$



Some Simulations

- ▶ Consistency results: Discretizing ρ, f recovers continuous solutions as resolution $\rightarrow \infty$



Applications

- ▶ Routing problems
- ▶ Catalyst design
- ▶ Nonlinear Dimensional Reduction
- ▶ Generative Learning

Thank you!