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Takeaway
—
Objective: Find a curve f : [0,1] —  minimizing
9o(5) = [ e F((0.1)) e
subject to length(f) < ¢.
_

Important point:

» More proper to say we want to “fill” the Lebesgue measure dw
on () rather than saying we want to fill .

> What if we try other measures?
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Other Measures
-

Example: Choose p € P(§2) more concentrated on the horizontal:

p~N(0; [0% 0; 00%]) oy L 0x
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Revised Objective

—
Objective: Given p € P(Q2), find f : [0,1] — £ minimizing
9o(5) = [ dlo.£(10.1)) dp(e)
subject to length(f) < ¢.
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Revised Objective

—
Objective: Given p € P(Q2), find f : [0,1] — £ minimizing
9o(5) = [ dlo.£(10.1)) dp(e)
subject to length(f) < ¢.
_

Another important point:
» Does f need to be 1d? (No.)

» What should we make our constraint when f is e.g. a surface?
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Choosing a Constraint C(f)

Want C(f) to measure “complexity” of f:
» If f nonconstant, C(f) >0

m m-dimensional Hausdorff measure fails here!
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Choosing a Constraint C(f)

Want C(f) to measure “complexity” of f:
» If f nonconstant, C(f) >0
m m-dimensional Hausdorff measure fails here!
» (Optional): If f highly oscillatory, C(f) > 0

Also want C to give nice analytic properties.

Choice:
C(f) = fllwrax.0)

(assume kg > m for Sobolev inequality)
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Problem Statement
[~ 1

Given:

> peP()

> (>0

>p=>1

» Some technical hypotheses
Minimize:

Goh) = [ int o @) dp(w)

QEX

Subject to:

1f lwraixio) < €
L _

Shorthand: J(¢) = infe(sy<¢ 9, (f)
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Summary of Main Results

1. Connection to OT?
2. Optimizers?
m Exist under mild hypotheses
m Generally nonunique (e.g. if X, Q have symmetries)
3. Relationship between J and £7
m J continuous in /¢
m J (trivially) nondecreasing..more than this, hard to say.
m Coarse asymptotic estimates from covering numbers

4. Important tool: Can find gradient of ¢, in C(f(X);R"™).
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Flavor of Problem: ¢,

1. g, nonconvex

(a) fo (®) fs () fn

2. ¢, nonconcave as well

3. But, jointly weakly continuous in f and p
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Flavor of Problem: C(f)

Given € extra budget, can we improve J?

» 2" order term makes local modifications very hard.

(a) f (b) Desired perturbation  (c) Best we can do

> Can’t just “extend” f past 9f(X)..
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Flavor of Problem: C(f)

Given € extra budget, can we improve J?
» 2" order term makes local modifications very hard.

» Can’t just “extend” f past 9f(X)..

supp(p) 0 supp(p) 0

(a) £(X) (b) Extended f(X)
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Performing Local Modifications

—
Define a Gradient: Let 7y : Q — f(X) be closest point projec-

tion. Disintegrate p under 7; into ({py}uef(X)’ v,) and let

B =p [ | (@-l-? dpy(e).
=7 ()
L _

» F), can be discontinuous even when
B feC™(X;0)
m f(X) is a C' manifold

> Still...(F}, &), » gives first variation in direction &.
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Local Modification Theorems
Two versions:

» Version A: can change topology, harder-to-verify hypotheses

» Version B: can’t change topology, easy-to-verify hypotheses
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Local Modification Theorems
Two versions:
» Version A: can change topology, harder-to-verify hypotheses

» Version B: can’t change topology, easy-to-verify hypotheses

R el

(a) Initial f (b) An f. for Version A (c) An f. for Version B

N
SN

(d) Another initial f (e) An f. for Version A (f) An f. for Version B
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Local Modifications, Continued
> Even though F), potentially highly irregular...

> As long as F, # 0 on a v,-non-null set, can find smooth
perturbation improving ¢!
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Some Simulations

» Consistency results: Discretizing p, f recovers continuous
solutions as resolution — oo
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Applications
» Routing problems
» Catalyst design

» Nonlinear Dimensional Reduction

» Generative Learning




Conclusion

Thank you!
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