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The Problem

Given:
1. A region Ω ⊆ R2,
2. A finite length ` of rope,

Find:
I The rope shape that best

“fills” Ω.
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Takeaway

Objective: Find a curve f : [0, 1] → Ω minimizing

Jp(f) =
ˆ

Ω
d(ω, f([0, 1])) dω

subject to length(f) ≤ `.

Important point:
I More proper to say we want to “fill” the Lebesgue measure dω

on Ω rather than saying we want to fill Ω.
I What if we try other measures?
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Other Measures

Example: Choose ρ ∈ P(Ω) more concentrated on the horizontal:

ρ ∼ N (0; [σ2
X 0; 0 σ2

Y ]) σY � σX
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Revised Objective

Objective: Given ρ ∈ P(Ω), find f : [0, 1] → Ω minimizing

Jp(f) =
ˆ

Ω
d(ω, f([0, 1])) dρ(ω)

subject to length(f) ≤ `.

Another important point:
I Does f need to be 1d? (No.)
I What should we make our constraint when f is e.g. a surface?
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Choosing a Constraint C(f)
Want C(f) to measure “complexity” of f :
I If f nonconstant, C(f) > 0

m-dimensional Hausdorff measure fails here!

I (Optional): If f highly oscillatory, C(f) � 0

Also want C to give nice analytic properties.

Choice:
C(f) = ‖f‖W k,q(X;Ω)

(assume kq > m for Sobolev inequality)
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Problem Statement

Given:
I ρ ∈ P(Ω)
I ` ≥ 0
I p ≥ 1
I Some technical hypotheses

Minimize:
Jp(f) =

ˆ
Ω

inf
x∈X

|ω − f(x)|p dρ(ω)

Subject to:
‖f‖W k,q(X;Ω) ≤ `

Shorthand: J(`) = infC(f)≤` Jp(f)
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Summary of Main Results
1. Connection to OT?
2. Optimizers?

Exist under mild hypotheses

Generally nonunique (e.g. if X, Ω have symmetries)

3. Relationship between J and `?
J continuous in `

J (trivially) nondecreasing…more than this, hard to say.

Coarse asymptotic estimates from covering numbers

4. Important tool: Can find gradient of Jp in C(f(X);Rn).
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Flavor of Problem: Jp

1. Jp nonconvex

(a) f0 (b) f.5 (c) f1

2. Jp nonconcave as well

3. But, jointly weakly continuous in f and ρ
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Flavor of Problem: C(f)
Given ε extra budget, can we improve J?
I 2nd-order term makes local modifications very hard.

(a) f (b) Desired perturbation (c) Best we can do

I Can’t just “extend” f past ∂f(X)…
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Flavor of Problem: C(f)
Given ε extra budget, can we improve J?
I 2nd-order term makes local modifications very hard.
I Can’t just “extend” f past ∂f(X)…

supp(ρ)
Ω

(a) f(X)

supp(ρ)
Ω

(b) Extended f(X)
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Performing Local Modifications

Define a Gradient: Let πf : Ω → f(X) be closest point projec-
tion. Disintegrate ρ under πf into ({ρy}y∈f(X), νρ) and let

Fp(y) = p

ˆ
π−1

f
({y})

(ω − y)|ω − y|p−2
dρy(ω).

I Fp can be discontinuous even when
f ∈ C∞(X; Ω)

f(X) is a C1 manifold

I Still…〈Fp, ξ〉L2 gives first variation in direction ξ.
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Local Modification Theorems
Two versions:
I Version A: can change topology, harder-to-verify hypotheses
I Version B: can’t change topology, easy-to-verify hypotheses

(a) Initial f (b) An fε for Version A (c) An fε for Version B

(d) Another initial f (e) An fε for Version A (f) An fε for Version B
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Local Modifications, Continued
I Even though Fp potentially highly irregular…
I As long as Fp 6= 0 on a νρ-non-null set, can find smooth

perturbation improving Jp!
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Some Simulations
I Consistency results: Discretizing ρ, f recovers continuous

solutions as resolution → ∞
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Applications
I Routing problems
I Catalyst design
I Nonlinear Dimensional Reduction
I Generative Learning
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Thank you!
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