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Introduction
e0

Overview

» Summary: Approximating n-dimensional measure with
m-dimensional measure

» Talk is front-loaded
» Outline
m Our initial motivation
m Related work
m A few results
m Numerics

Follow-up work
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Our Initial Motivation

M Bl
Given: Find:
1. A compact Q2 C R"” » The rope shape that best
2. A rope constrained by “fills” Q.

L C(rope) < ¢,

Goal: Quantify “efficiency” of space-filling curves
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Our Initial Motivation
Hilbert Curve:

]

Peano Curve:

(not exactly apples-to-apples; length scales differently in order)
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Introduction
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Our Initial Motivation

M Bl
Given: Find:
1. A compact Q2 C R"” » The rope shape that best
2. A rope constrained by “fills” Q.

L C(rope) < ¢,

Goal: Quantify “efficiency” of space-filling curves

To discuss:
» Meaning of “filling?”
» What should C be?

eon Kim (UBC) and Jonathan
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Notion of “Filling”
Q: Which is “better?” Why?

(a) One candidate (b) ...And another
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Defining Problem
00000

Notion of “Filling”
Q: Which is “better?” Why? One idea...

(a) A “good” filling (b) A “bad” filling
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Notion of “Filling,” cont.
Proposal: Average distance

1

I = /Q d(w, img(f)) dw

oint

Bud



Defining Problem
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Notion of “Filling,” cont.
Proposal: Average distance

1 .
I = /Q d(w, img(f)) dw

= Eunit(o)[d(w, img(f))]

..What’s the fundamental object?

eon Kim (U



Defining Problem
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“Filling” Other Measures
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“Filling” Other Measures
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Summary of “Filling”
For p > 1, p € P(Q)), let
Golfip) = [ @ (erime() dole)

..Connection to OT?

oint

Bud



Defining Problem
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Summary of “Filling”
For p > 1, p € P(Q)), let

9(fip) = /Q & (w, mg(f)) dp(w)

..Connection to OT?

> Denote 7(w) = Projige(s)(w) and v = my,:

9p(f5p) = Wi(p,v)

rk with Young-Heon Kim (UBC) and Jonathan Hayase (UW)




Defining Problem

000e00

Summary of “Filling”
For p > 1, p € P(Q)), let

Golfip) = [ @ (erime() dole)
..Connection to OT?
> Denote 7(w) = Projige(s)(w) and v = my,:

9p(f;p) = Wi(p,v)

in WP(p, v/
v/ €P (img(f)) ples )

» Next: m-surfaces; higher-order constraints

rk with Young-Heon Kim (UBC) and Jonathan Hayase (UW)




Defining Problem
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Quantifying “Complexity”
» No meaningful constraint = “efficiency” meaningless

» Our choice: Wk4(X;Q) Sobolev norm (denoted C(f))

Forest Ko
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Quantifying “Complexity”
» No meaningful constraint = “efficiency” meaningless
» Our choice: Wk4(X;Q) Sobolev norm (denoted C(f))

» Problem statement:

|— 1
Given: Goal:
1. A measure p € P(Q), .
2. A budget £ > 0, = Minimize: §p(f; /)
L 3. A space W*?(X;Q) m Subject to: C(f) < £ N

m Technical hypotheses: X, () are “nice,” 1 < ¢ < oo, and kq > m

m Example applications (Routing, Catalyst Design, ML)

eon Kim (UBC) and Jonathan




Defining Problem

O0000e

Related work
> Average-Distance Problem: m = 1, C(f) = H'(img(f))

m Buttazzo, Oudet, and Stepanov, 2002; many more (see review in
Lemenant, 2012)

m Doesn’t generalize obviously to m > 1
» Principal Curves and Surfaces: C(f) = length(f)

m Hastie and Stuetzle, 1989; Kégl et al., 2000; Kirov and Slepcev,
2017; Lu and Slepcev, 2013, 2016, 2020; Delattre and Fischer,
2018

» Smoothing splines: p essentially m-dimensional; p = 2,

C(f) = X jaj=k 1D fill 2
m Tons of references

m Some formulations more similar to ours (Wang, Pottman, and
Liu, 2006)

rk with Young-Heon Kim (UBC) and Jonathan Hayase (UW)




Features of The Problem
[ Je]

Comparison to Principal Curves
» Principal curves: C(f) = length(f)
» Key distinction:
m length(f) parametrization-independent.

m For k> 1, || fllyr.a(x.q) severely parametrization-dependent.

Forest Ko




Features of The Problem
oe

Case Study: Local Improvements
M B

Question: Given J extra budget, can we improve ¢, (f)?

L

oint

Bud



Features of The Problem
oe

Case Study: Local Improvements
M B

Question: Given J extra budget, can we improve ¢, (f)?

L
» Can’t just “extend” f past 9f(X)..

supp(p) supp(p)

(a) f(X) (b) Extended f(X)

eon Kim (U




The Problem

Case Study: Local Improvements
M B

Question: Given J extra budget, can we improve ¢, (f)?

L _
» Can’t just “extend” f past 9f(X)..

» Interior modifications? Challenging when k > 1
}o() /\

(a) Initial f (b) length(f) case (c) Sobolev case

eon Kim (UBC) and Jonathan




Some Results

@000

Trying “Gradient Flow” of some kind?

M Bl
Theorem
Let f € C(X;Q) and £ € C(X;R™). Then if
1.p>1, or
2. p=1 with a mild hypothesis,
there exists a well-defined vector field Fy and measure pig on X s.t.

5, (f:p) = /X (Fe ) dpie(a)

With some extra hypotheses, Fe, pe can be made independent of €.
L

» Constraint-agnostic!

» ..But this causes problems of its own

t work with Young-Heon Kim (UBC) and Jonathan Hayase (UW)




Can handle complicated modifications

Example 1:

(a) Initial f (b) Ex. perturbation 1 (c) Ex. perturbatlon 2

Example 2:

L ON'®

(a) Another initial f (b) Ex. perturbation 1 ) Ex. perturbation 2




Some Results
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Problem: F¢ inherits little regularity

Let f(x) = (z,23sin(1/z)) with Q a square.

t work with Young-Heon Kim (UBC) and Jonathan Hayase (UW)




Some Results

[e]e] le)

Problem: F¢ inherits little regularity

Let f(x) = (z,23sin(1/z)) with Q a square(not to scale!).

rk with Young-Heon Kim (UBC) and Jonathan Hayase (UW)




Some Results
[e]e]e] )

Good News

» Improvements exist:

r Bl
Theorem

If there exists any & s.t. Fy is nontrivial, then there exists a

local £ € C*° with 0e9p(fip) <O
L _

» Framework of Fy informs approach to other problems (project
with Lucas)

» [ trivially well-behaved for discretized f, p

m Theorem: §,(f,p) jointly continuous. Corollary: Consistency

eon Kim (U




Numerics

> Assume m = 1, n = 2, p uniform, supp(p) convex
» Sample N points from f (assumed to be a spline)
» Fast routine for G¢ = §:C(f): O(kN)

m k = weak derivative order, so essentially O(N)
» Compute Voronoi cells: O(N log N)

» Fast computation of F¢ for general p: O(NM), where M is the
average number of boundary points per Voronoi cell

» Perturb by nF: + AG¢ and fit new spline

» Reparametrize by arc length via reduction to elliptic integral

ork with Young-Heon Kim (UBC) and Jonathan Ha




Experi
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Generative Learning

» Soft Proposal: Monge-Kantorovich Fitting gives
loosely-analogous toy problem for some black-box models

» Like WGAN, but learns only geometry of support of
approximating measure

» Regularizing generator, not critic

oint
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Proposed mechanism: Regularizing Generator

eon Kim (UBC) and Jonathan
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(cont.): Unregularized Generator




(cont.): Unregularized Generator

(a) © =1120 (b) i = 1850
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Comparison on MNIST

(a) 1 epoch (wd) (b) 1 epoch (reg)

Figure: Visualization of f sampled at 152 uniformly-spaced points on [0,1]




Comparison on MNIST
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(b) 30 epochs (reg)

(a) 30 epochs (wd)

Figure: Visualization of f sampled at 15> uniformly-spaced points on [0, 1]

3
o]
:
bt
b
]
“
=
3
O
M
E
R4
&
b
e
.
0
>
|
B
I




s aoammde Y
LWoreaYUmed Hme w0y
N QYo FomNen )N
3T Mcnes ooy
AT MOmEenn
=Q PN Nboedagdmn et
—ONT AN mm®Y
2O NTC N oymmoey vl
LIHITHAIA[/Am Mol
e reBonagmaonlyonby
AQAIJrTr YT @ ANNYM SN
NO>ocTanNTdeNgy mS
NAPTrLNCENNM IS0
~arrorbhocdNNOMQanl
SYO0 0T DT dmmMmw S

6eb6béé

eon Kim (UBC) and Jonathan H.

(b) 100 epoch (reg)
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(a) 100 epoch (wd)
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Figure: Visualization of f sampled at 15> uniformly-spaced points on [0, 1]

Comparison on MNIST




Comparison on MNIST
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(b) 1000 epochs (reg)

(a) 1000 epochs (wd)

Figure: Visualization of f sampled at 152 uniformly-spaced points on [0, 1]
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Experimer
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Thank you!
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