

Monge-Kantorovich Fitting Under a Sobolev Budget

Or: Sobolev-Constrained Principal Curves and Surfaces

Forest Kobayashi

Joint work with Young-Heon Kim (UBC) and Jonathan Hayase (UW)

Thursday, August 22nd 2024

Overview

- ▶ Summary: Approximating n -dimensional measure with m -dimensional measure
- ▶ Talk is front-loaded
- ▶ Outline
 - Our *initial* motivation
 - Related work
 - A few results
 - Numerics
 - Follow-up work

Our Initial Motivation

Given:

1. A compact $\Omega \subseteq \mathbb{R}^n$
2. A rope constrained by
 $\mathcal{C}(\text{rope}) \leq \ell$,

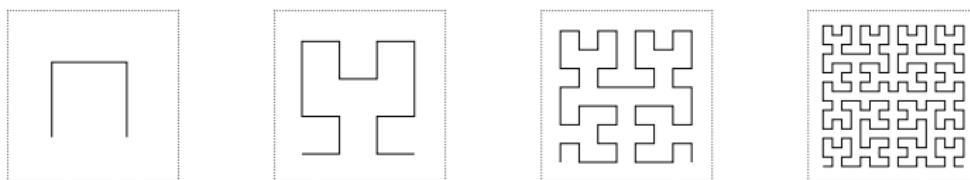
Find:

- ▶ The rope shape that best “fills” Ω .

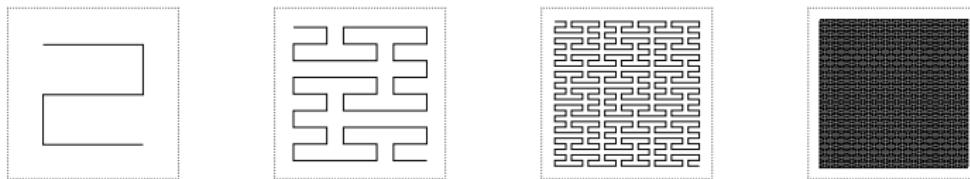
Goal: Quantify “efficiency” of space-filling curves

Our Initial Motivation

Hilbert Curve:



Peano Curve:



(not exactly apples-to-apples; length scales differently in order)

Our Initial Motivation

Given:

1. A compact $\Omega \subseteq \mathbb{R}^n$
2. A rope constrained by
 $\mathcal{C}(\text{rope}) \leq \ell$,

Find:

- ▶ The rope shape that best “fills” Ω .

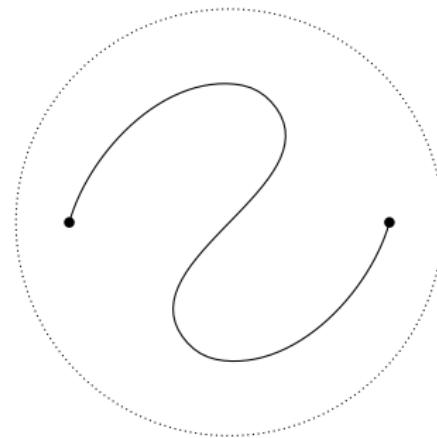
Goal: Quantify “efficiency” of space-filling curves

To discuss:

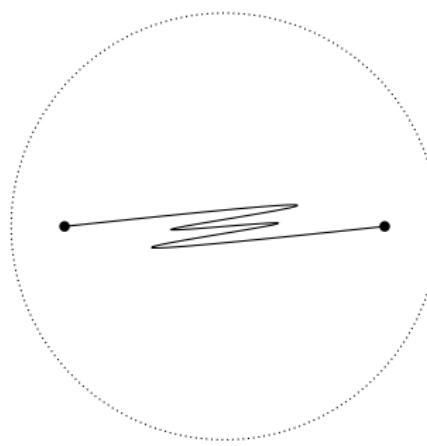
- ▶ Meaning of “filling?”
- ▶ What should \mathcal{C} be?

Notion of “Filling”

Q: Which is “better?” Why?



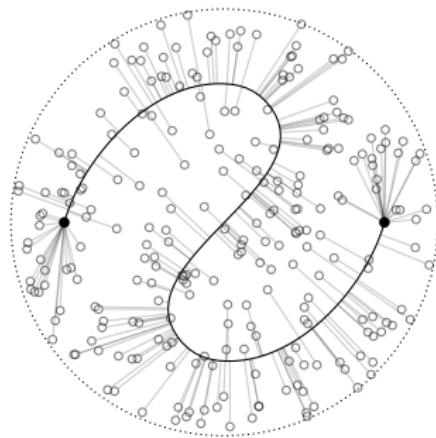
(a) One candidate



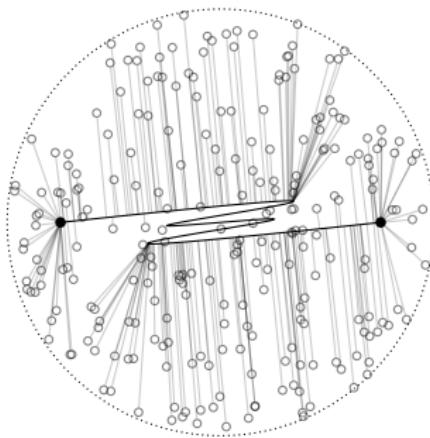
(b) ...And another

Notion of “Filling”

Q: Which is “better?” Why? *One idea...*



(a) A “good” filling



(b) A “bad” filling

Notion of “Filling,” cont.

Proposal: Average distance

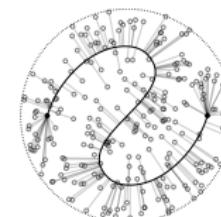
$$\mathcal{J}(f) = \frac{1}{m(\Omega)} \int_{\Omega} d(\omega, \text{img}(f)) \, d\omega$$

Notion of “Filling,” cont.

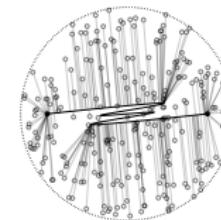
Proposal: Average distance

$$\begin{aligned}\mathcal{J}(f) &= \frac{1}{m(\Omega)} \int_{\Omega} d(\omega, \text{img}(f)) \, d\omega \\ &= \mathbb{E}_{\text{Unif}(\Omega)}[d(\omega, \text{img}(f))]\end{aligned}$$

...What's the fundamental object?



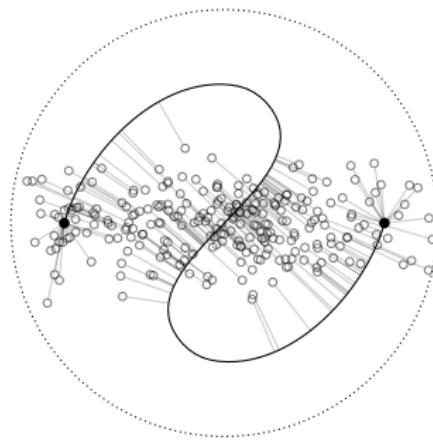
(a)



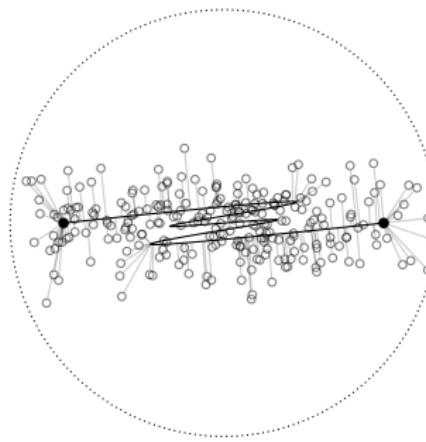
(b)

“Filling” Other Measures

Proposal: Minimize $\int_{\Omega} d(\omega, \text{img}(f)) d\rho(\omega) = \mathbb{E}_{\rho}[d(\omega, \text{img}(f))]$



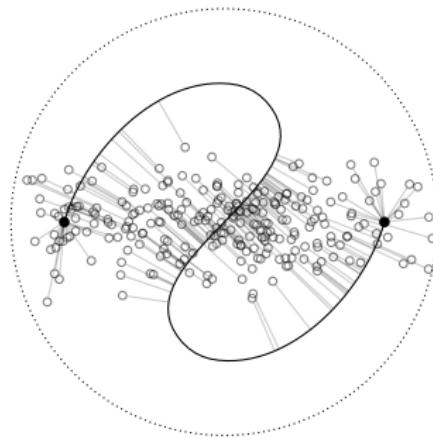
(a) A “bad” filling



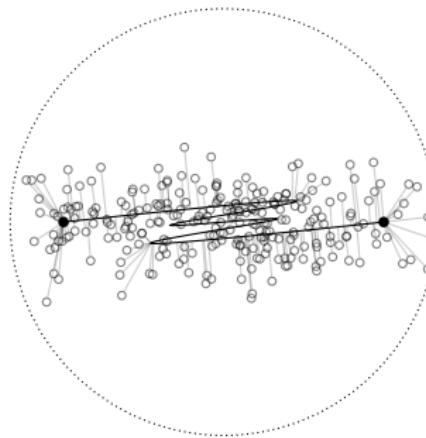
(b) A “good” filling

“Filling” Other Measures

Proposal: Minimize $\int_{\Omega} d^{\textcolor{red}{p}}(\omega, \text{img}(f)) d\rho(\omega) = \mathbb{E}_{\rho}[d^{\textcolor{red}{p}}(\omega, \text{img}(f))]$



(a) A “bad” filling



(b) A “good” filling

Summary of “Filling”

For $p \geq 1$, $\rho \in \mathcal{P}(\Omega)$, let

$$\mathcal{J}_p(f; \rho) = \int_{\Omega} d^p(\omega, \text{img}(f)) \ d\rho(\omega)$$

...Connection to OT?

Summary of “Filling”

For $p \geq 1$, $\rho \in \mathcal{P}(\Omega)$, let

$$\mathcal{J}_p(f; \rho) = \int_{\Omega} d^p(\omega, \text{img}(f)) \ d\rho(\omega)$$

...Connection to OT?

- ▶ Denote $\pi(\omega) = \text{proj}_{\text{img}(f)}(\omega)$ and $\nu = \pi_{\# \rho}$:

$$\mathcal{J}_p(f; \rho) = \mathbb{W}_p^p(\rho, \nu)$$

Summary of “Filling”

For $p \geq 1$, $\rho \in \mathcal{P}(\Omega)$, let

$$\mathcal{J}_p(f; \rho) = \int_{\Omega} d^p(\omega, \text{img}(f)) \ d\rho(\omega)$$

...Connection to OT?

- ▶ Denote $\pi(\omega) = \text{proj}_{\text{img}(f)}(\omega)$ and $\nu = \pi_{\# \rho}$:

$$\begin{aligned} \mathcal{J}_p(f; \rho) &= \mathbb{W}_p^p(\rho, \nu) \\ &= \inf_{\nu' \in \mathcal{P}(\text{img}(f))} \mathbb{W}_p^p(\rho, \nu') \end{aligned}$$

- ▶ Next: m -surfaces; higher-order constraints

Quantifying “Complexity”

- ▶ No meaningful constraint \implies “efficiency” meaningless
- ▶ Our choice: $W^{k,q}(X; \Omega)$ Sobolev norm (denoted $\mathcal{C}(f)$)

Quantifying “Complexity”

- ▶ No meaningful constraint \implies “efficiency” meaningless
- ▶ Our choice: $W^{k,q}(X; \Omega)$ Sobolev norm (denoted $\mathcal{C}(f)$)
- ▶ Problem statement:

Given:

1. A measure $\rho \in \mathcal{P}(\Omega)$,
2. A budget $\ell \geq 0$,
3. A space $W^{k,q}(X; \Omega)$

Goal:

- Minimize: $\mathcal{J}_p(f; \rho)$
- Subject to: $\mathcal{C}(f) \leq \ell$

- Technical hypotheses: X, Ω are “nice,” $1 < q < \infty$, and $kq > m$
- Example applications (Routing, Catalyst Design, ML)

Related work

- ▶ Average-Distance Problem: $m = 1$, $\mathcal{C}(f) = \mathcal{H}^1(\text{img}(f))$
 - Buttazzo, Oudet, and Stepanov, 2002; many more (see review in Lemenant, 2012)
 - Doesn't generalize obviously to $m > 1$
- ▶ Principal Curves and Surfaces: $\mathcal{C}(f) = \text{length}(f)$
 - Hastie and Stuetzle, 1989; Kégl et al., 2000; Kirov and Slepčev, 2017; Lu and Slepčev, 2013, 2016, 2020; Delattre and Fischer, 2018
- ▶ Smoothing splines: ρ essentially m -dimensional; $p = 2$,
 $\mathcal{C}(f) = \sum_{|\alpha|=k} \|D^\alpha f_i\|_{L^2}$
 - Tons of references
 - Some formulations more similar to ours (Wang, Pottman, and Liu, 2006)

Comparison to Principal Curves

- ▶ Principal curves: $\mathcal{C}(f) = \text{length}(f)$
- ▶ Key distinction:
 - $\text{length}(f)$ parametrization-independent.
 - For $k > 1$, $\|f\|_{W^{k,q}(X;\Omega)}$ **severely** parametrization-dependent.

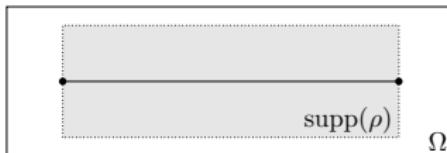
Case Study: Local Improvements

Question: Given δ extra budget, can we improve $\mathcal{J}_p(f)$?

Case Study: Local Improvements

Question: Given δ extra budget, can we improve $\mathcal{J}_p(f)$?

- ▶ Can't just "extend" f past $\partial f(X)$...



(a) $f(X)$

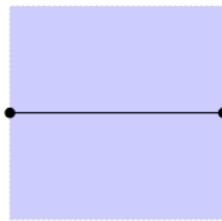


(b) Extended $f(X)$

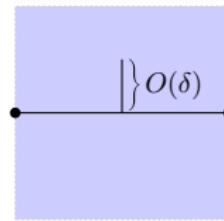
Case Study: Local Improvements

Question: Given δ extra budget, can we improve $\mathcal{J}_p(f)$?

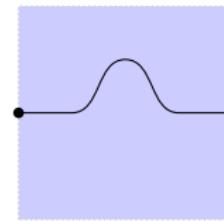
- ▶ Can't just "extend" f past $\partial f(X)$...
- ▶ Interior modifications? Challenging when $k > 1$



(a) Initial f



(b) $\text{length}(f)$ case



(c) Sobolev case

Trying “Gradient Flow” of some kind?

Theorem

Let $f \in C(X; \Omega)$ and $\xi \in C(X; \mathbb{R}^n)$. Then if

1. $p > 1$, or
2. $p = 1$ with a mild hypothesis,

there exists a well-defined vector field F_ξ and measure μ_ξ on X s.t.

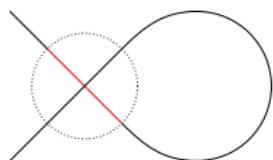
$$\delta_\xi \mathcal{J}_p(f; \rho) = \int_X -\langle F_\xi, \xi \rangle \, d\mu_\xi(x)$$

With some extra hypotheses, F_ξ , μ_ξ can be made independent of ξ .

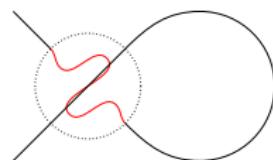
- ▶ Constraint-agnostic!
- ▶ ...But this causes problems of its own

Can handle complicated modifications

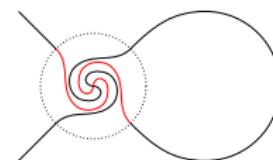
Example 1:



(a) Initial f

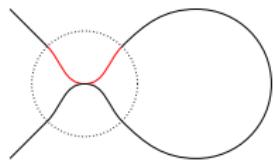


(b) Ex. perturbation 1

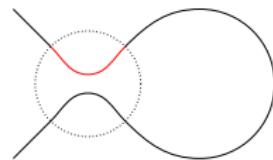


(c) Ex. perturbation 2

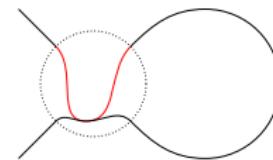
Example 2:



(a) Another initial f



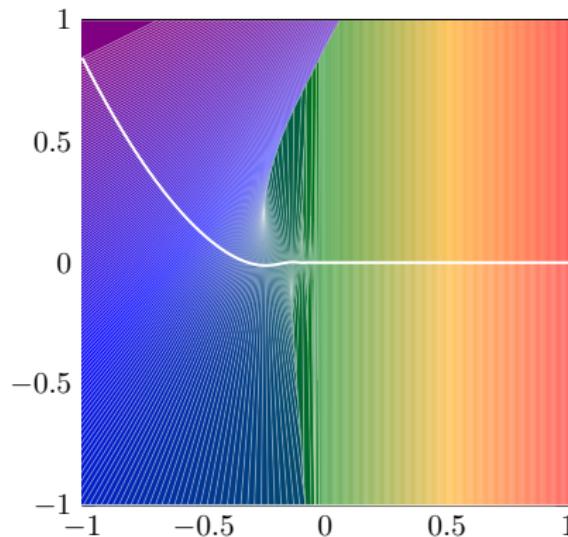
(b) Ex. perturbation 1



(c) Ex. perturbation 2

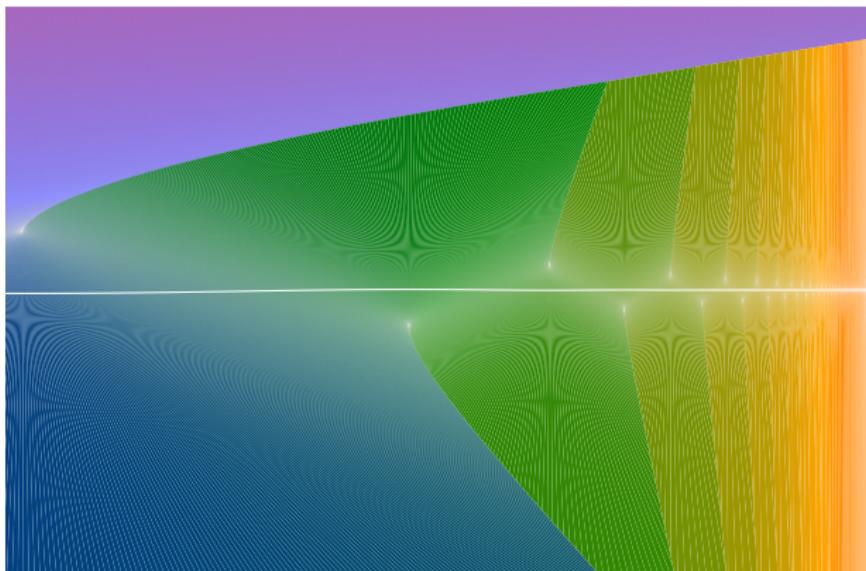
Problem: F_ξ inherits little regularity

Let $f(x) = (x, x^3 \sin(1/x))$ with Ω a square.



Problem: F_ξ inherits little regularity

Let $f(x) = (x, x^3 \sin(1/x))$ with Ω a square(not to scale!).



Good News

- ▶ Improvements exist:

Theorem

If there exists any ξ s.t. F_ξ is nontrivial, then there exists a local $\tilde{\xi} \in C^\infty$ with $\delta_\xi \mathcal{J}_p(f; \rho) < 0$

- ▶ Framework of F_ξ informs approach to other problems (project with Lucas)
- ▶ F_ξ trivially well-behaved for discretized f, ρ
 - Theorem: $\mathcal{J}_p(f, \rho)$ jointly continuous. Corollary: Consistency

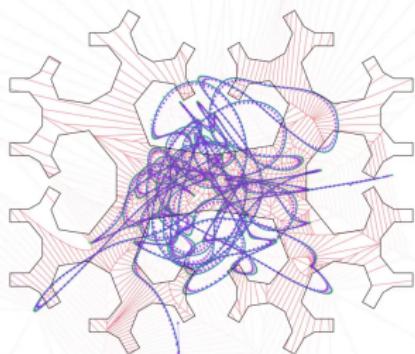
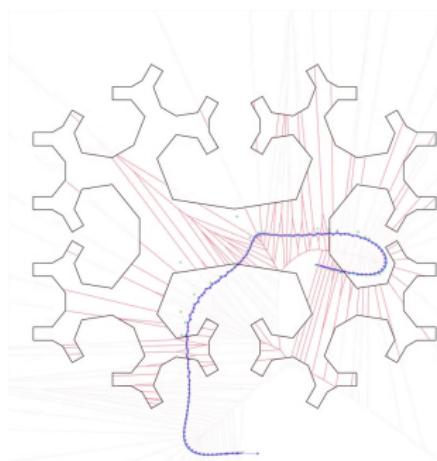
Numerics

- ▶ Assume $m = 1$, $n = 2$, ρ uniform, $\text{supp}(\rho)$ convex
- ▶ Sample N points from f (assumed to be a spline)
- ▶ Fast routine for $G_\xi = \delta_\xi \mathcal{C}(f)$: $O(kN)$
 - k = weak derivative order, so essentially $O(N)$
- ▶ Compute Voronoi cells: $O(N \log N)$
- ▶ Fast computation of F_ξ for *general* p : $O(NM)$, where M is the average number of boundary points per Voronoi cell
- ▶ Perturb by $\eta F_\xi + \lambda G_\xi$ and fit new spline
- ▶ Reparametrize by arc length via reduction to elliptic integral

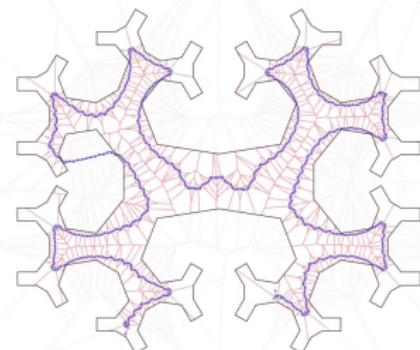
Generative Learning

- ▶ Soft Proposal: Monge-Kantorovich Fitting gives loosely-analogous toy problem for some black-box models
- ▶ Like WGAN, but learns only geometry of support of approximating measure
- ▶ Regularizing *generator*, not critic

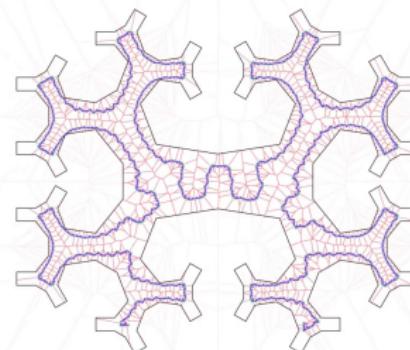
Proposed mechanism: Regularizing Generator

(a) $i = 1$ (b) $i = 110$

Proposed mechanism: Regularizing Generator

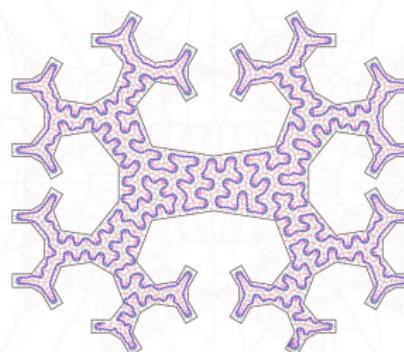


(a) $i = 800$



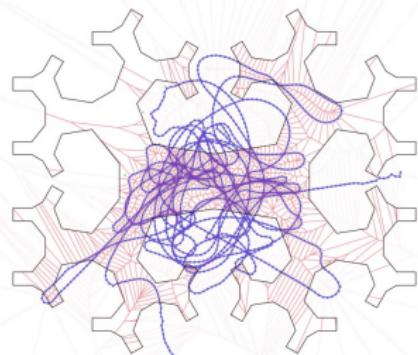
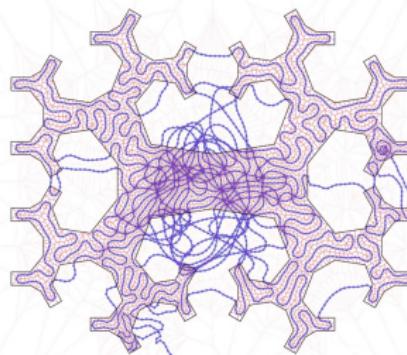
(b) $i = 1120$

Proposed mechanism: Regularizing Generator

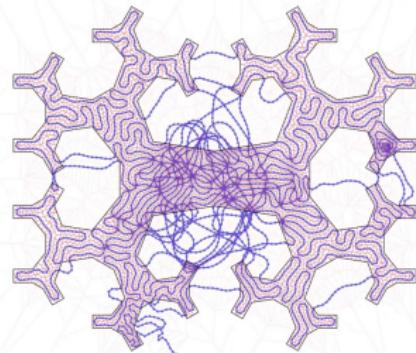
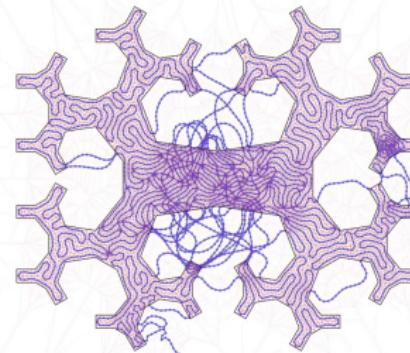


(a) $i = 1850$

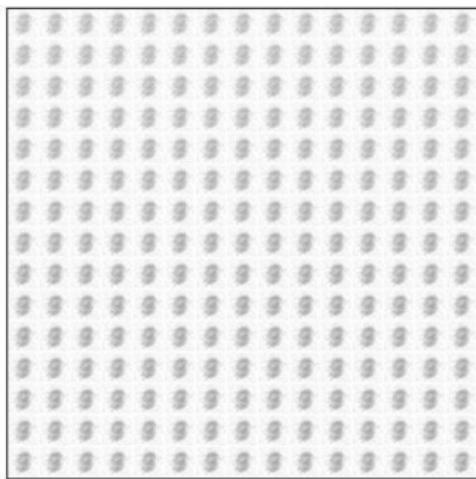
(cont.): Unregularized Generator

(a) $i = 110$ (b) $i = 800$

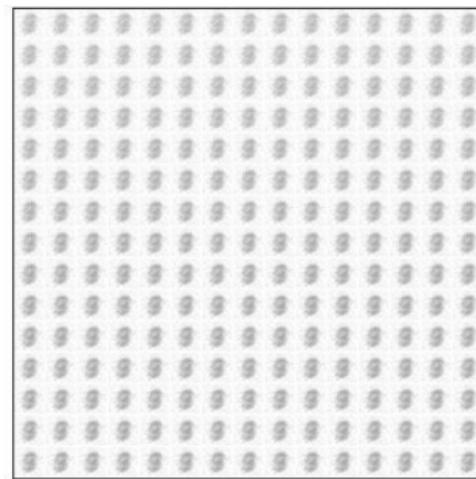
(cont.): Unregularized Generator

(a) $i = 1120$ (b) $i = 1850$

Comparison on MNIST



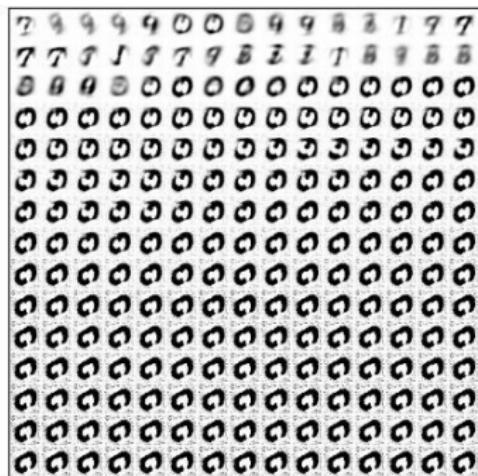
(a) 1 epoch (wd)



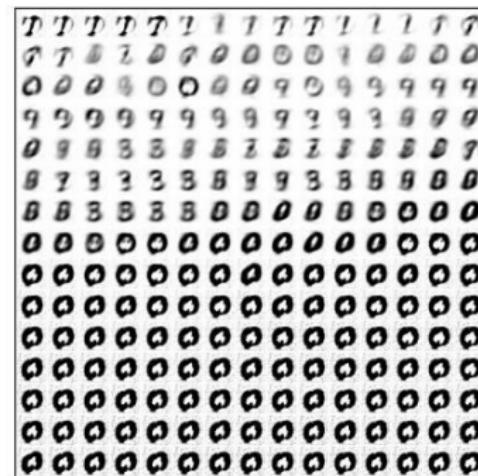
(b) 1 epoch (reg)

Figure: Visualization of f sampled at 15^2 uniformly-spaced points on $[0, 1]$

Comparison on MNIST



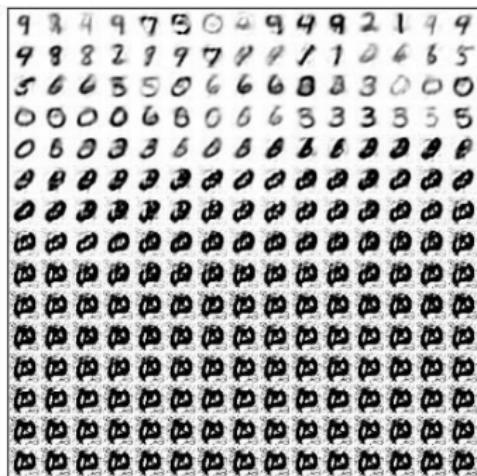
(a) 30 epochs (wd)



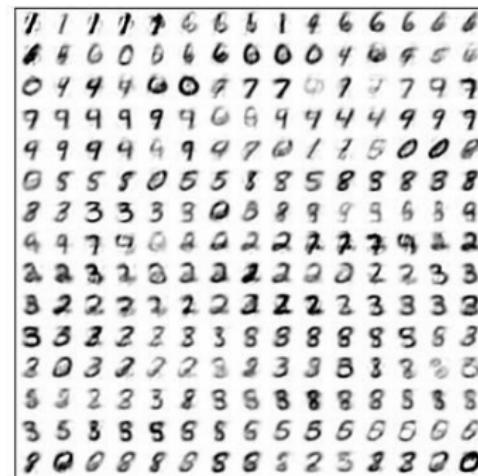
(b) 30 epochs (reg)

Figure: Visualization of f sampled at 15^2 uniformly-spaced points on $[0, 1]$

Comparison on MNIST



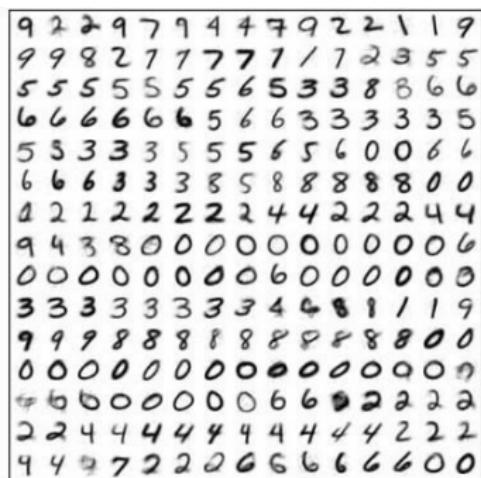
(a) 100 epoch (wd)



(b) 100 epoch (reg)

Figure: Visualization of f sampled at 15^2 uniformly-spaced points on $[0, 1]$

Comparison on MNIST



(a) 1000 epochs (wd)



(b) 1000 epochs (reg)

Figure: Visualization of f sampled at 15^2 uniformly-spaced points on $[0, 1]$

Thank you!