

Monge-Kantorovich Fitting under a Sobolev Budget

Or: Sobolev-Constrained Principal Curves and Surfaces

Forest Kobayashi

Joint work with Young-Heon Kim (UBC) and Jonathan Hayase (UW)

Thursday, June 6th 2024

Our Original Motivation

Given:

1. A $\rho \in \mathcal{P}(\Omega)$ ($\Omega \subseteq \mathbb{R}^n$)
2. A finite length ℓ of rope,

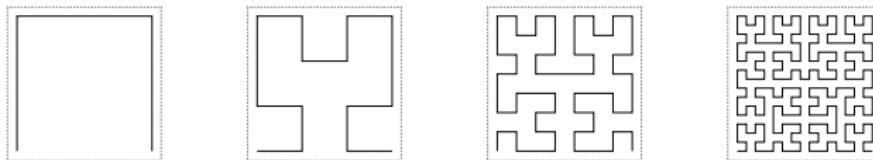
Find:

- ▶ The rope shape that best “fills” ρ .

“Filling” quantified by

$$\min_{\nu \in \mathcal{P}(f([0,1]))} \mathbb{W}_p(\rho, \nu)$$

Goal: Notion of “optimal” space-filling curves (or m -surfaces)



Optional additional regularity via Sobolev constraint

(Euclidean) Principal Curves

- ▶ Continuous $f : [0, 1] \rightarrow \Omega$ with $\text{length}(f) \leq \ell$
 - (Hard constraint! C.f. soft penalty)
- ▶ Measure quality of approximation via

$$\mathcal{J}_p(f) = \int_{\Omega} d^p(\omega, f) \ d\rho(\omega)$$

- ▶ **Easy to show:** $\mathcal{J}_p(f) = \inf_{\nu \in \mathcal{P}(f([0,1]))} \mathbb{W}_p^p(\rho, \nu)$

(Euclidean) Principal Curves

Given:

1. A measure $\rho \in \mathcal{P}(\Omega)$,
2. A finite length ℓ of rope,

Find:

- ▶ Shape minimizing

$$\mathcal{J}_p(f) = \int_{\Omega} d^p(\omega, f) \, d\rho(\omega)$$

Example 1: $\Omega = B_1(0; \mathbb{R}^2)$ $\rho = \text{Unif}(\Omega)$ $\ell \approx .8 \cdot 2\pi$

(Euclidean) Principal Curves

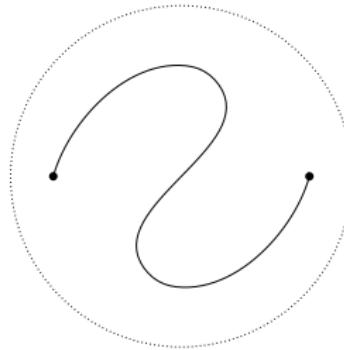
Given:

1. A measure $\rho \in \mathcal{P}(\Omega)$,
2. A finite length ℓ of rope,

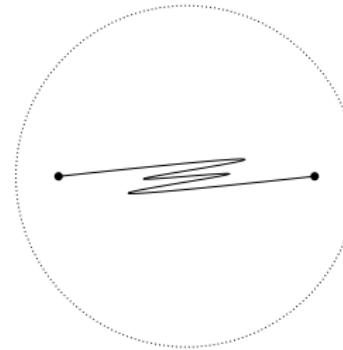
Find:

- ▶ Shape minimizing
 $\mathcal{J}_p(f) = \int_{\Omega} d^p(\omega, f) d\rho(\omega)$

Example 1: $\Omega = B_1(0; \mathbb{R}^2)$ $\rho = \text{Unif}(\Omega)$ $\ell \approx .8 \cdot 2\pi$



(a) A “good” filling



(b) A “bad” filling

(Euclidean) Principal Curves

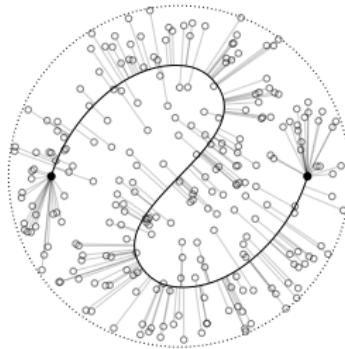
Given:

1. A measure $\rho \in \mathcal{P}(\Omega)$,
2. A finite length ℓ of rope,

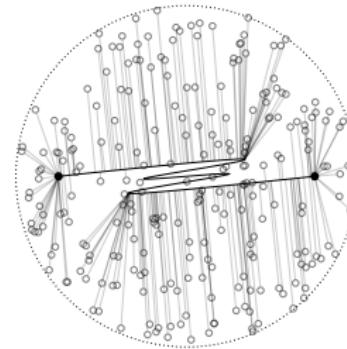
Find:

- ▶ Shape minimizing
 $\mathcal{J}_p(f) = \int_{\Omega} d^p(\omega, f) d\rho(\omega)$

Example 1: $\Omega = B_1(0; \mathbb{R}^2)$ $\rho = \text{Unif}(\Omega)$ $\ell \approx .8 \cdot 2\pi$



(a) A “good” filling



(b) A “bad” filling

(Euclidean) Principal Curves

Given:

1. A measure $\rho \in \mathcal{P}(\Omega)$,
2. A finite length ℓ of rope,

Find:

- ▶ Shape minimizing

$$\mathcal{J}_p(f) = \int_{\Omega} d^p(\omega, f) d\rho(\omega)$$

Example 2: Same Ω and ℓ , but $\rho \sim \mathcal{N}(0; [\sigma_X^2 \ 0; \ 0 \ \sigma_Y^2])$ with $\sigma_Y \ll \sigma_X$

(Euclidean) Principal Curves

Given:

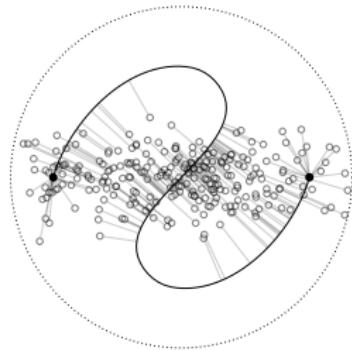
1. A measure $\rho \in \mathcal{P}(\Omega)$,
2. A finite length ℓ of rope,

Find:

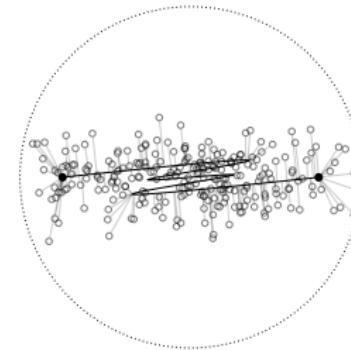
- ▶ Shape minimizing

$$\mathcal{J}_p(f) = \int_{\Omega} d^p(\omega, f) d\rho(\omega)$$

Example 2: Same Ω and ℓ , but $\rho \sim \mathcal{N}(0; [\sigma_X^2 \ 0; \ 0 \ \sigma_Y^2])$ with $\sigma_Y \ll \sigma_X$



(a) A “bad” filling



(b) A “good” filling

Swapping $\text{length}(f)$ for a Sobolev Norm

- ▶ Given: $f : X \rightarrow \Omega$ ($X \subseteq \mathbb{R}^m$, $\Omega \subseteq \mathbb{R}^n$)
- ▶ Choose constraint

$$\mathcal{C}(f) = \|f\|_{W^{k,q}(X;\Omega)}$$

(when $m = 1$, c.f. $\text{length}(f) = \|f'\|_{L^1(X;\Omega)}$)

- ▶ Example application: Drone routing
- ▶ Key distinction:
 - $\text{length}(f)$ parametrization-independent.
 - For $k > 1$, $\|f\|_{W^{k,q}(X;\Omega)}$ **severely** parametrization-dependent.

Case Study: Local Improvements

Question: Given δ extra budget, can we improve $\mathcal{J}_p(f)$?

Case Study: Local Improvements

Question: Given δ extra budget, can we improve $\mathcal{J}_p(f)$?

- ▶ Can't just "extend" f past $\partial f(X)$...

(a) $f(X)$

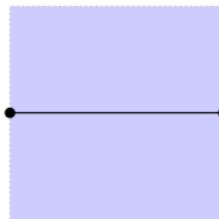


(b) Extended $f(X)$

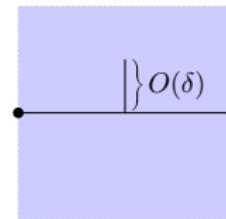
Case Study: Local Improvements

Question: Given δ extra budget, can we improve $\mathcal{J}_p(f)$?

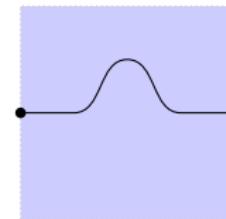
- ▶ Can't just "extend" f past $\partial f(X)$...
- ▶ Interior modifications? Challenging when $k > 1$



(a) Initial f



(b) $\text{length}(f)$ case



(c) Sobolev case

Trying “Gradient Flow” of some kind?

Theorem

Let $f \in C(X; \Omega)$ and $\xi \in C(X; \mathbb{R}^n)$. Then if

1. $p > 1$, or
2. $p = 1$ and $\rho(f(X) \cap \text{supp}(\xi)) = 0$,

then $\delta \mathcal{J}_p(f; \xi)$ can be encoded via a well-defined vector field F_ξ and measure μ_ξ on X :

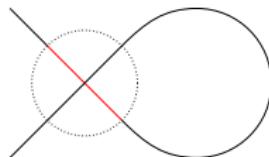
$$\delta \mathcal{J}_p(f; \xi) = \int_X -\langle F_\xi, \xi \rangle \, d\mu_\xi(x)$$

With some extra hypotheses, F_ξ , μ_ξ can be made independent of ξ .

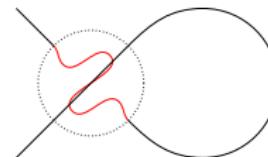
- ▶ Constraint-agnostic!
- ▶ ...But this causes problems of its own

Can handle complicated modifications

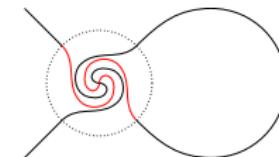
Example 1:



(a) Initial f

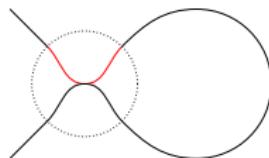


(b) Ex. perturbation 1

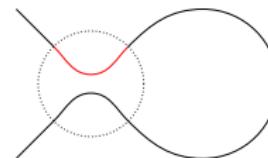


(c) Ex. perturbation 2

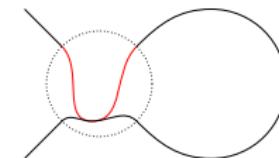
Example 2:



(a) Another initial f



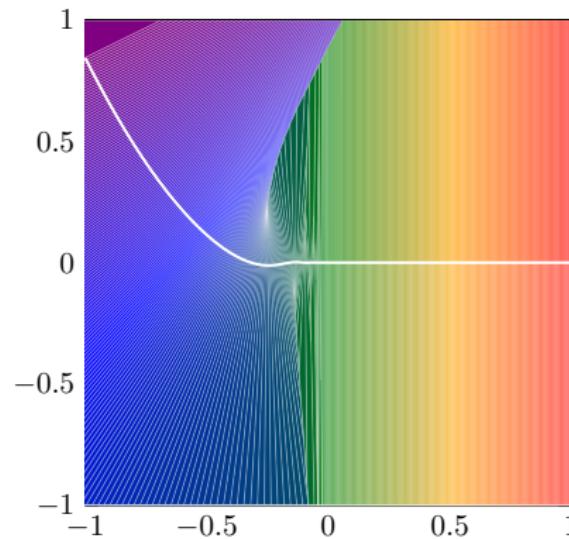
(b) Ex. perturbation 1



(c) Ex. perturbation 2

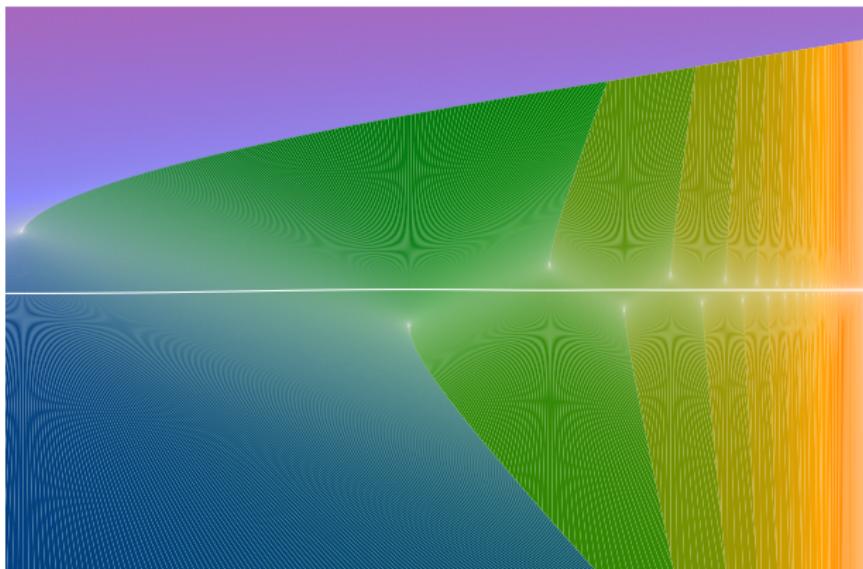
Problem: F_p inherits little regularity

Let $f(x) = (x, x^3 \sin(1/x))$ with Ω a square.



Problem: F_p inherits little regularity

Let $f(x) = (x, x^3 \sin(1/x))$ with Ω a square(not to scale!).



Thank you!