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Overview
o

Summary

» Goal: Efficiently approximate n-d measures via m-dimensional
sets (m < n)

m “Approximate” in what sense?
m “Efficient” in what sense?
» Outline:
m Motivating examples
m Define problem
m Gradient structure

m Algorithm

m Regularization in Generative ML
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Ex. 1: Learning noisily-embedded manifolds

(a) A few data points... (b) ..and a few more.

Figure 1: Seemingly-unstructured data in a hexagon.




(a) More... (b) ..and more...

Figure 1: With more points, a picture begins to emerge.

Based on joint work with JH and YHK
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Ex. 1 (cont.): Learning noisily-embedded manifolds

(a) ..and more!

Figure 1: With more points, a picture begins to emerge.

Based on joint work with JH and
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Ex. 1 (cont.): Learning noisily-embedded manifolds

(a) The data. (b) Extracted structure.

Figure 1: Recover a time-ordering!

Based on joint work with JH and YHK




Ex. 2: Approximating a properly-higher-dim. p

British Columbia DALY

Wildfire Service Danger Rating
08 Jun 2023 1200 PST

- Weather Sttions

Figure 2: Wildfire danger map
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Ex. 2: Approximating a properly-higher-dim. p

British Columbia DAILY
Wildfire Service Danger Rating
X 08 Jun 2023 1200 PST

Figure 2: Example trajectory. (Is it “good?”)

work with JH
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Summary of some applications

» m =1, n € {2,3}: Routing problems (wildfire drone, package
delivery routes, “continuous” TSP)

» m =1, n > 2: Trajectory inference (e.g. cryo-EM, scRNA-seq)
> m =2, n = 3: Catalytic surface design

> 1 <m < n: Certain generative learning problems

Based on joint work with JH and YHK
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Basic Definitions

Setting up the Problem
» Source:

m X CR™ (compact)

» Target:
B /1 € Pept(R")

» Optimization variable:

m f:X — R" (cont.)
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Basic Definitions

Setting up the Problem

» Source:

m X CR™ (compact)

> Target:
B [ € Pepte(R™)
» Optimization variable:

m f:X — R" (cont.)

supp ft

work with JH and YHK
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Basic Definitions

Setting up the Problem
> X CR™
> i € Pept(R™)
> f: X > R"

supp ft

work with JH and YHK
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Quantifying approximation performance

How “close” is f(X) to u?
» Want OT cost, but f(X) a set
> Idea:

9p(fsp) = inf  Wi(u,v)

veP(f(X)) P

» Equivalently [K., Hayase, Kim ’24; Prop. 2.7]:

d*(w, f(X)) dp(w)
R’n

= Euld?(w, fF(X))]

Based on joint work with JH and YHK
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Quantif; proximation performa

Visualization

_

-
I_Q: Which shape better “fills” unit disk?

(a) One candidate (b) ...And another




Definitions
oe

Quantifying approximation performance

Visualization

-
I_Q: Which shape better “fills” unit disk?
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Regularization

Quantifying complexity of f

» No complexity constraint — degeneracy; efficiency meaningless
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Regularization

Quantifying complexity of f

» No complexity constraint — degeneracy; efficiency meaningless

]




Regularization

Quantifying complexity of f

» No complexity constraint — degeneracy

. AP
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(a) Efficient trajectory (b) Inefficient trajectory
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Regularization

Quantifying complexity of f

» No complexity constraint — degeneracy

> We use:
C(f) = Hf||Wk=‘1(X,R")
n 1/q
- (X S0l
J=1]a|<k
> Examples:
(a) Cheap f (b) Expensive f (¢) Expensive f

Based on joint work with JH and YHK
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Problem statement

The “best” f

> For A > 0, minimize

[9(Fi1) = Gulfi 1) +2C ().

» Computing global solutions:
m “Probably” NP-Hard
m For k,q =1 & discrete u, get TSP as A — 0.

» How about local improvements?

Based on joint work with JH and
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Improving an f
r 1
Theorem (Informal)

With technical hypotheses, get a vector field F' and measure v s.t.
for all continuous &,

ti el +€€0) = Gp(fip) _ /_<F’§> .

e—0 9

L _

Some details swept under rug (“what’s domain of integration?”)

F like (negative) “gradient” (sans regularity issues)

—(F,€) 2(,) like directional derivative

vV v vy

v very simple; F' more complicated

Based on joint work with JH and YHK
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What is F?

Discrete case easier to visualize:




What is F'?

Discrete case easier to visualize: Compute (p — 1) barycenter




What is F?

Discrete case easier to visualize: Compute (p — 1) barycenter

work with JH




What is F?

Discrete case easier to visualize:




Visualizing F' in cont. case

Based on work with JH and YHK




Visualizing F' in cont. case

Based on work with JH and YHK
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Visualizing F' in cont. case

with a C
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Overview of Numerics

Overview
» Big picture:
m Discretize f
m Compute F (= —V{,) and —VC
m Optimize to get step size n
m f— f+n(F—-AV0C)
» Challenges:
C1. Discretization of f is delicate
C2. Efficient Voronoi cell assignments for F'

C3. How to compute —VC?

Based on joint work with JH and YHK
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C1: Need evenly-spaced samples of f
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C1: Need evenly-spaced samples of f
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Challenges

C1: Evenly-spaced samples of f—our method
> After each iteration:
m Fit cubic spline f to samples

m Define: Arclength functional

b

L@@@:/

Ja

m Compute total length ¢
m Get evenly-spaced values I; on [0, ]
m For given l;, want t; such that L(f;0,t;) = [;...

m Binary search then polish w/ Newton’s method

Based on joint work with JH and YHK
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Challenges

C1: Evenly-spaced samples of f, cont.
» Need: Efficient query method for arclength L(f;0,¢)

m Quadrature a bit slow

m [5] reduces L(f;0,t) to an elliptic integral explicitly solved in [3]

m Reduction: need factorization into real quadratics
D ) = QuHQa (),
j=1

(exists if f £ 0; use fast root-finding algorithms)

m When n = 2: Get a stable, analytic formula via trick
@+ 6 = (@1 —ig2)(q1 + ig2)

» End result: Fast resampling of f

Based on joint work with JH and YHK

Blob with
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Challenges

C2: Quickly computing F
» Continuous data: Special case p uniform, supp p PL
1. Explicitly compute Voronoi diagram
2. Fast triangular decomposition of supp p

3. Triangles: F' has analytic formula in terms of hypergeometric
function

4. Sum results
» Discrete data: Need faster Voronoi assignments
m CPU-method: spatial-acceleration datastructures

m GPU-method: brute-force

Based on joint work with JH and YHK
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C2: CPU method, acceleration datastructures

Figure 6: The tree datastructure encoding the quadrants shown previously.




Numer
0000@0000

C2: CPU method, acceleration datastructures

11T

Figure 6: Associate lexicographic strings to each node, and permute input
data array to be lex. sorted




Figure 6: Annotate nodes of tree with range of descendants (also, diameter).
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Challenges

C2: CPU method, Performing the Voronoi Assignments

» With trees above, construct further k-d tree

» Core loop:

1.
2.
3.

Take data pt. v;
Query k-d tree for closest samples y?, yi of f

Let r; = ’d(vi7y?) — d(vi,y})| and compute

ji == |logy (r;/diam(node for v;))|

Slice trailing j; entries off lex_code(v;); yields ancestor a;
Fact: All descendants (v;,...,v;) of a; in same Voronoi cell as v;

Assign all (v;,...,vy); let i =4’ + 1 and loop

Based on joint work with JH and YHK




C2: CPU method, Pictures

Figure 7: Starting configuration.
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Challenges

C2: CPU method, Pictures

Figure 7: Select v;.




Figure 7: Compute ancestor a; C By, (v;)
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Challenges

C2: CPU method, Benchmarking

Mean exec. time + ¢ (ms) Median (ms) Mem. est. (MiB) Allocs. est. (#)

M Our alg. k-d tree Our alg. k-d tree  Our alg. k-d tree  Our alg.  k-d tree
2.16 - 10° 43+4 45£11 43 39 21.03 32.96 521697 864014
5.12-10° 67 116 £ 25 76 107 36.70 78.13 879072 2048014
8.00-10° 10245 190 £ 35 103 184 48.83 122.07 1143060 3200014
1.00-106 114£6 242 + 92 115 221 56.16 152.59 1297350 4000014
1.20-106 126 +£7 307 + 148 127 281 62.81 181.11 1433556 4800014
1.50- 106 152+£13 398 £172 149 383 72.39 228.88 1627029 6000014
1.80-105 16149 493 £ 273 164 461 81.83 274.66 1798515 7200014
2.00-10% 168 410 550 &+ 316 169 514 86.72 305.18 1906332 8000014
2.50-10% 196 4 12 T11+477 198 619 99.70 381.47 2150112 10000014
5.00-10% 300 £ 23 1587 £ 1201 304 1304 155.41 762.94 3123312 20000014
1.00-107 467 £ 30 3370 + 2805 471 2838 245.37 1490 4500033 40000014

Table 1: Benchmarking for y = Unif([0,1]?). M: # input data pts.
N = 100: # Voronoi cell roots (also uniform).

work with JH and YHK
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C3: Computing Sobolev gradient —VC
» In C1 we fit a cubic spline f
» In general: f ¢ Wh9(X;R")

» = need new spline of order k + 2.

» Approach:

1.

Get B-Spline basis; compute C*(X;R") spline interpolating
resampled f

Derivatives of all orders linear in spline coefficients
Spline coefficients linear in fitted points

Linear relationships can be precomputed very quickly (inverse of
(k 4+ 2)-width banded matrix) once per loop

= fast computation of derivatives of all orders

Based on work with JH and YHK
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Conclusion & Examples

Bottom Line

» Runtime:
m Resampling f evenly:
® Fast forn =2
® Good forn > 2
m Computing F' = —V{,:

® Special continuous case: Very fast if supp p convex; decent
otherwise

® Discrete case: Acceptable on CPU; extremely fast on GPU
m Approximating —VC:
® Very fast

» Memory:

m Lightweight except discrete CPU method for F = -V,
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Conclusion & Examples

Example numerics

(a)i=1 (b) i = 150
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Conclusion & Examples

Example numerics

(a) i = 300 (b) i = 1000
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Conclusion & Examples

More simulations
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More simulations
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Conclusion & Examples

More simulations




Numerics

Conclusion & Examples

More simulations
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Conclusion & Examples

More simulations
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Conclusion & Examples

More simulations

Forest Kobayashi (UBC) Based int work with JH and YHK

How to Approximate a Blob with a Curve
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Transition: Numerics — gen. ML

Setting:

» 1 “hidden;” only have jiy

» Goal: Generate novel samples ~ p
Common assumption:

» 1 concentrated on low-dim. set
Role of regularization:

» Classical: avoidance of overfitting

> New: Better expressability within model class

Based on work with JH and YHK




Recall: WGAN

Notation:
» Latent p, generator fy, critic D,

Goal: Minimize
WG o)) =suw { [ D e~ (g | D € Liv, |

Training:
» D,: step (with reg.) along V,,
> fy: step along —Vy

Based on joint work with JH and YHK

Blob with
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WGAN, cont.

Takeaway:
» Classical: reg. only critic D,,
» Generator fy: gradients from D,, = implicit reg.?
Our proposal:
> “Factor” WGAN:
1. m-to-n: Learn set supp((fs)#p) w/o knowing f
2. m-to-m: Learn param. fy

» Isolate “hard” m-to-n problem (learning shape of support) and
regularize it

» Do “easy” m-to-m step second

Based on work with JH and YHK
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New regularization interpretation
Role of explicit reg.
» fy avoids self-intersections
» fewer points outside supp(u)
» Lip(fp) small = better preservation of locality
The point:
» Reparam. ¢ with (fg o @)up = (7y,)xp less singular
» ¢ less singular = better training
m Low-regularity functions often difficult to express in model class

m Slow convergence, training instability, ...

Based on joint work with JH and YHK
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A regularized “generator”
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A regularized “generator”

\/,

a/\ : ?/M:\Sh

(a) i = 800 (b) i = 1120

Based on work with JH and YHK
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A regularized “generator”

(a) i = 1850
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(cont.): Unregularized Generator

Based on joint work with JH
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(cont.): Unregularized Generator

(b) i = 1850

(a) i = 1120
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Proof of concept: training on MNIST

(a) 1 epoch (wd) (b) 1 epoch (reg)

Figure 11: f sampled at 15% uniformly-spaced points on [0, 1]

work with JH and YHK
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(a) 30 epochs (wd)

Blob with

Figure 11: f sampled at 15% uniformly-spaced points on [0, 1]

Proof of concept: training on MNIST
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(b) 100 epoch (reg)
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(a) 100 epoch (wd)
Figure 11: f sampled at 15% uniformly-spaced points on [0, 1]

Proof of concept: training on MNIST
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Thank you for your attention!
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