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Disclaimers
I “Just” curves?

Algorithm: yes, for now…

Theory: more general

I Many statements informal
→ Focus on big picture and algorithm
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Summary
I Goal: Efficiently approximate n-d measures via m-dimensional

sets (m < n)
“Approximate” in what sense?

“Efficient” in what sense?

I Outline of sections:
Motivating examples

Define problem

Gradient structure

Algorithm
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Ex. 1: Learning noisily-embedded manifolds

(a) A few data points… (b) …and a few more.

Figure 1: Seemingly-unstructured data in a hexagon.
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Ex. 1 (cont.): Learning noisily-embedded manifolds

(a) More… (b) …and more…

Figure 1: With more points, a picture begins to emerge.
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Ex. 1 (cont.): Learning noisily-embedded manifolds

(a) …and more!

Figure 1: With more points, a picture begins to emerge.
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Ex. 1 (cont.): Learning noisily-embedded manifolds

(a) The data. (b) Extracted structure.

Figure 1: “Averaging” the tubular segments in the data.
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Ex. 2: Approximating a properly-higher-dim. ρ

Figure 2: Wildfire danger map

Forest Kobayashi (UBC) Based on joint work with JH and YHK
How to Approximate a Blob with a Curve



Overview Motivation Definitions Gradient Numerics References Backup Slides

Ex. 2: Approximating a properly-higher-dim. ρ

Figure 2: Example trajectory. (Is it “good?”)
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Summary of some applications
I m = 1, n ∈ {2, 3}: Routing problems (wildfire drone, package

delivery routes, “continuous” TSP)
I m = 1, n ≥ 2: Trajectory inference (e.g. cryo-EM, scRNA-seq)
I m = 2, n = 3: Catalytic surface design
I 1 ≤ m � n: Certain generative learning problems

Forest Kobayashi (UBC) Based on joint work with JH and YHK
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Basic Definitions

Setting up the Problem
I Source:

X ⊆ Rm (compact)

I Target:
µ ∈ Pcpt(Rn)

I Optimization variable:
f : X → Rn (cont.)

Forest Kobayashi (UBC) Based on joint work with JH and YHK
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Basic Definitions

Setting up the Problem
I Source:

X ⊆ Rm (compact)

I Target:
µ ∈ Pcpt(Rn)

I Optimization variable:
f : X → Rn (cont.)

X

supp µ
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Basic Definitions

Setting up the Problem
I X ⊆ Rm

I µ ∈ Pcpt(Rn)
I f : X → Rn

X

supp µ

f
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Quantifying approximation performance

How “close” is f(X) to µ?
I Want OT cost, but f(X) a set
I Idea:

Jp(f ; µ) = inf
ν∈P(f(X))

Wp
p(µ, ν)

I Equivalently [7, Prop. 2.7]:

Jp(f ; µ) =
ˆ
Rn

dp(ω, f(X)) dµ(ω)

= Eµ[dp(ω, f(X))]

Forest Kobayashi (UBC) Based on joint work with JH and YHK
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Quantifying approximation performance

Visualization

Q: Which shape better “fills” unit disk?

(a) One candidate (b) …And another

Forest Kobayashi (UBC) Based on joint work with JH and YHK
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Quantifying approximation performance

Visualization

Q: Which shape better “fills” unit disk?

(a) A “good” filling (b) A “bad” filling

Forest Kobayashi (UBC) Based on joint work with JH and YHK
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Regularization

Quantifying complexity of f

I No complexity constraint → degeneracy
I We use:

C(f) := ‖f‖W k,q(X,Rn)

=
( n∑

j=1

∑
|α|≤k

‖Dαfj‖q
Lq

)1/q

.

I Examples:

(a) Cheap f (b) Expensive f (c) Expensive f

Forest Kobayashi (UBC) Based on joint work with JH and YHK
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Problem statement

The “best” f

I For λ > 0, minimize

Jλ(f ; µ) := Jp(f ; µ) + λC(f).

I Computing global solutions:
“Probably” NP-Hard

For k, q = 1, recover TSP as λ→ 0.

I How about local improvements?

Forest Kobayashi (UBC) Based on joint work with JH and YHK
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Improving an f

Theorem (Informal)
With some technical hypotheses, can get a vector field F and
measure ν ∈ P(f(X)) such that for all ξ ∈ C(f(X);Rn),

lim
ε→0

Jp(f + εξ; ρ) − Jp(f ; ρ)
ε

=
ˆ

f(X)
−〈F, ξ〉 dν.

I F like (negative) “gradient” (sans regularity issues)
I −〈F, ξ〉L2(ν) like directional derivative
I ν very simple; F more complicated

Forest Kobayashi (UBC) Based on joint work with JH and YHK
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What is F?
Discrete case easier to visualize:
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What is F?
Discrete case easier to visualize: Compute (p − 1) barycenter
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What is F?
Discrete case easier to visualize: Compute (p − 1) barycenter
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What is F?
Discrete case easier to visualize:
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Visualizing F in cont. case
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Figure 5: An example µ
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Visualizing F in cont. case
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Figure 5: An example f approximating µ
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Visualizing F in cont. case
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Figure 5: Slicing
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Overview of Numerics

Overview
I Big picture:

Discretize f

Compute F (= −∇Jp) and −∇C

Optimize to get step size η

f ← f + η(F − λ∇C)

I Challenges:
C1. Discretization of f is delicate

C2. Efficient Voronoi cell assignments for F

C3. How to compute −∇C?

Forest Kobayashi (UBC) Based on joint work with JH and YHK
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Challenges

C1: Need evenly-spaced samples of f

Forest Kobayashi (UBC) Based on joint work with JH and YHK
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Challenges

C1: Need evenly-spaced samples of f
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Challenges

C1: Need evenly-spaced samples of f
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Challenges

C1: Evenly-spaced samples of f—our method
I After each iteration:

Fit cubic spline f to samples

Define: Arclength functional

L(f; a, b) =
ˆ b

a

√√√√ n∑
j=1

(ḟj)2 dt

Compute total length `

Get evenly-spaced values li on [0, `]

For given li, want ti such that L(f; 0, ti) ≈ li…

Binary search then polish w/ Newton’s method

Forest Kobayashi (UBC) Based on joint work with JH and YHK
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Challenges

C1: Evenly-spaced samples of f , cont.
I Need: Efficient query method for arclength L(f; 0, t)

Quadrature a bit slow

[5] reduces L(f; 0, t) to an elliptic integral explicitly solved in [3]

Reduction: need factorization into real quadratics∑
j=1

(ḟj)2 = Q1(t)Q2(t),

(exists if ḟ 6= 0; use fast root-finding algorithms)

When n = 2: Get a stable, analytic formula via trick
q2

1 + q2
2 = (q1 − iq2)(q1 + iq2)

I End result: Fast resampling of f

Forest Kobayashi (UBC) Based on joint work with JH and YHK
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Challenges

C2: Quickly computing F
I Continuous data: Special case µ uniform, supp µ PL

1. Explicitly compute Voronoi diagram

2. Fast triangular decomposition of supp µ

3. Triangles: F has analytic formula in terms of hypergeometric
function

4. Sum results

I Discrete data: Need faster Voronoi assignments
CPU-method: spatial-acceleration datastructures

GPU-method: brute-force

Forest Kobayashi (UBC) Based on joint work with JH and YHK
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Challenges

C2: CPU method, acceleration datastructures
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Figure 6: Example orthant subdivision for M = 15 samples of Unif([0, 1]2).
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Challenges

C2: CPU method, acceleration datastructures
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Figure 6: The tree datastructure encoding the quadrants shown previously.
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Challenges

C2: CPU method, acceleration datastructures
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III
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Figure 6: Associate lexicographic strings to each node, and permute input
data array to be lex. sorted
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Challenges

C2: CPU method, acceleration datastructures
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Figure 6: Annotate nodes of tree with range of descendants (also, diameter).
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Challenges

C2: CPU method, Performing the Voronoi Assignments
I With trees above, construct further k-d tree
I Core loop:

1. Take data pt. vi

2. Query k-d tree for closest samples y0
i , y1

i of f

3. Let ri =
∣∣d(vi, y0

i )− d(vi, y1
i )

∣∣ and compute

ji := blog2 (ri/diam(node for vi))c

4. Slice trailing ji entries off lex_code(vi); yields ancestor ai

5. Fact: All descendants (vi, . . . , vi′ ) of ai in same Voronoi cell as vi

6. Assign all (vi, . . . , vi′ ); let i = i′ + 1 and loop

Forest Kobayashi (UBC) Based on joint work with JH and YHK
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Challenges

C2: CPU method, Pictures

Figure 7: Starting configuration.

Forest Kobayashi (UBC) Based on joint work with JH and YHK
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Challenges

C2: CPU method, Pictures

Figure 7: Select vi.
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Challenges

C2: CPU method, Pictures

Figure 7: Compute ancestor ai ⊆ Bri (vi)
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Challenges

C2: CPU method, Benchmarking

Mean exec. time ± σ (ms) Median (ms) Mem. est. (MiB) Allocs. est. (#)
M Our alg. k-d tree Our alg. k-d tree Our alg. k-d tree Our alg. k-d tree

2.16 · 105 43 ± 4 45 ± 11 43 39 21.03 32.96 521697 864014
5.12 · 105 76 ± 7 116 ± 25 76 107 36.70 78.13 879072 2048014
8.00 · 105 102 ± 5 190 ± 35 103 184 48.83 122.07 1143060 3200014
1.00 · 106 114 ± 6 242 ± 92 115 221 56.16 152.59 1297350 4000014
1.20 · 106 126 ± 7 307 ± 148 127 281 62.81 181.11 1433556 4800014
1.50 · 106 152 ± 13 398 ± 172 149 383 72.39 228.88 1627029 6000014
1.80 · 106 161 ± 9 493 ± 273 164 461 81.83 274.66 1798515 7200014
2.00 · 106 168 ± 10 550 ± 316 169 514 86.72 305.18 1906332 8000014
2.50 · 106 196 ± 12 711 ± 477 198 619 99.70 381.47 2150112 10000014
5.00 · 106 300 ± 23 1587 ± 1201 304 1304 155.41 762.94 3123312 20000014
1.00 · 107 467 ± 30 3370 ± 2805 471 2838 245.37 1490 4500033 40000014

Table 1: Benchmarking for µ = Unif([0, 1]2). M : # input data pts.
N = 100: # Voronoi cell roots (also uniform).
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Challenges

C3: Computing Sobolev gradient −∇C

I In C1 we fit a cubic spline f
I In general: f 6∈ W k,q(X;Rn)
I ⇒ need new spline of order k + 2.
I Approach:

1. Get B-Spline basis; compute Ck(X;Rn) spline interpolating
resampled f

2. Derivatives of all orders linear in spline coefficients

3. Spline coefficients linear in fitted points

4. Linear relationships can be precomputed very quickly (inverse of
(k + 2)-width banded matrix) once per loop

5. ⇒ fast computation of derivatives of all orders

Forest Kobayashi (UBC) Based on joint work with JH and YHK
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Conclusion & Examples

Bottom Line
I Runtime:

Resampling f evenly:
• Fast for n = 2

• Good for n > 2

Computing F = −∇Jp:
• Special continuous case: Very fast if supp µ convex; decent

otherwise

• Discrete case: Acceptable on CPU; extremely fast on GPU

Approximating −∇C:
• Very fast

I Memory:
Lightweight except discrete CPU method for F = −∇Jp

Forest Kobayashi (UBC) Based on joint work with JH and YHK
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Conclusion & Examples

Example numerics

(a) i = 1 (b) i = 150
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Conclusion & Examples

Example numerics

(a) i = 300 (b) i = 1000
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Conclusion & Examples

More simulations
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Conclusion & Examples

More simulations
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Conclusion & Examples

More simulations
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Conclusion & Examples

More simulations
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Conclusion & Examples

More simulations
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Conclusion & Examples

More simulations
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Conclusion & Examples

Thank you for your attention!
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Generative Learning
I Soft Proposal: this problem gives loosely-analogous toy problem

for some black-box models
I Like (regularized) WGAN, but

Learns only support of approximating measure (not
parametrization)

Regularization on generator, not critic

I Gives a possible interpretation for what regularization “does”
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A regularized “generator”

(a) i = 1 (b) i = 110
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A regularized “generator”

(a) i = 800 (b) i = 1120
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A regularized “generator”

(a) i = 1850
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(cont.): Unregularized Generator

(a) i = 110 (b) i = 800
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(cont.): Unregularized Generator

(a) i = 1120 (b) i = 1850
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Proof of concept: training on MNIST

(a) 1 epoch (wd) (b) 1 epoch (reg)

Figure 11: f sampled at 152 uniformly-spaced points on [0, 1]
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Proof of concept: training on MNIST

(a) 30 epochs (wd) (b) 30 epochs (reg)

Figure 11: f sampled at 152 uniformly-spaced points on [0, 1]
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Proof of concept: training on MNIST

(a) 100 epoch (wd) (b) 100 epoch (reg)

Figure 11: f sampled at 152 uniformly-spaced points on [0, 1]
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Proof of concept: training on MNIST

(a) 1000 epochs (wd) (b) 1000 epochs (reg)

Figure 11: f sampled at 152 uniformly-spaced points on [0, 1]
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