

How to Approximate a Blob with a Curve

An Overview of a Gradient-based Numerical Algorithm

Forest Kobayashi (UBC)

Based on joint work with Jonathan Hayase (UW) and Young-Heon Kim (UBC)

Monday, June 30th 2025

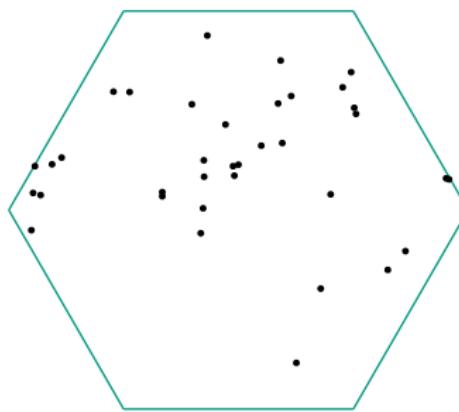
Disclaimers

- ▶ “Just” curves?
 - Algorithm: yes, for now...
 - Theory: more general
- ▶ Many statements **informal**
 - → Focus on big picture and algorithm

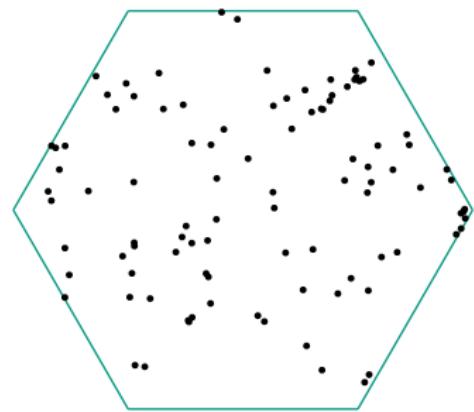
Summary

- ▶ Goal: Efficiently approximate n -d measures via m -dimensional sets ($m < n$)
 - “Approximate” in what sense?
 - “Efficient” in what sense?
- ▶ Outline of sections:
 - Motivating examples
 - Define problem
 - Gradient structure
 - Algorithm

Ex. 1: Learning noisily-embedded manifolds



(a) A few data points...



(b) ...and a few more.

Figure 1: Seemingly-unstructured data in a hexagon.

Ex. 1 (cont.): Learning noisily-embedded manifolds

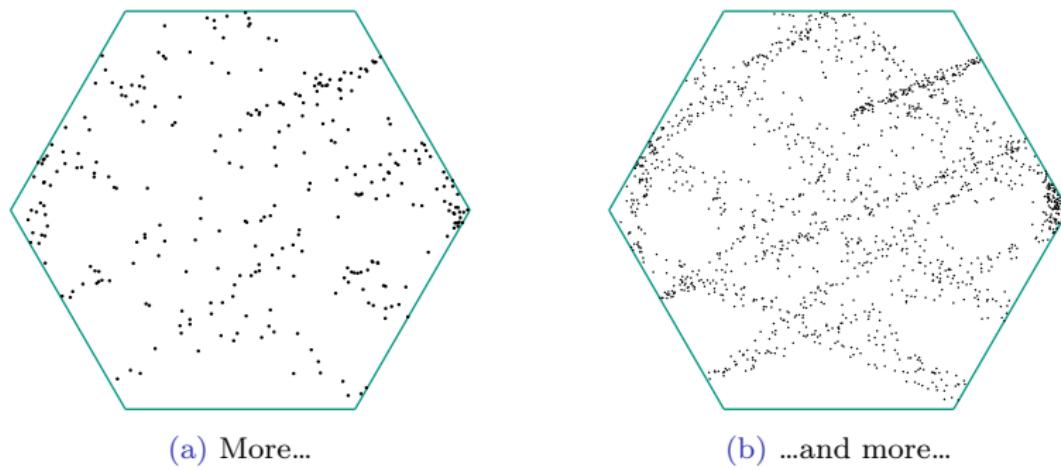
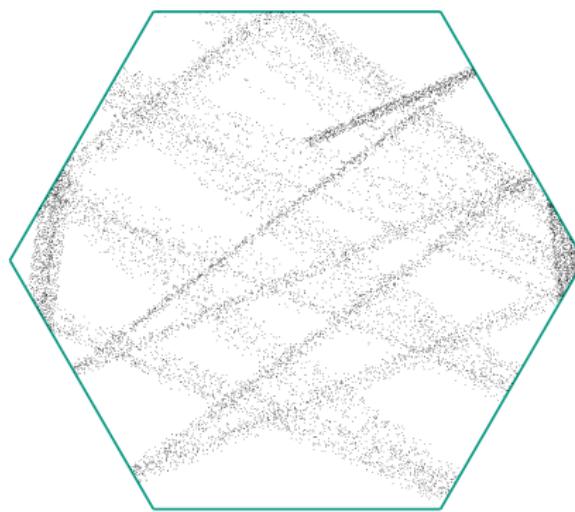


Figure 1: With more points, a picture begins to emerge.

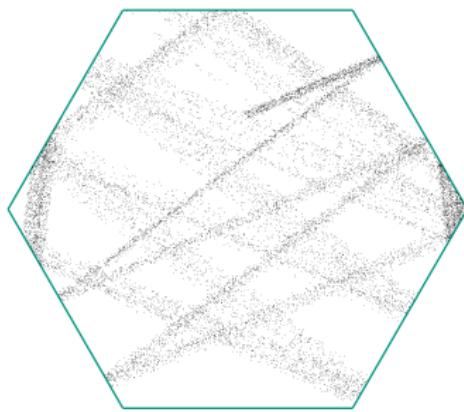
Ex. 1 (cont.): Learning noisily-embedded manifolds



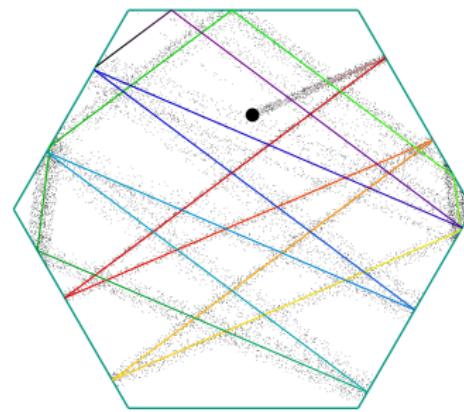
(a) ...and more!

Figure 1: With more points, a picture begins to emerge.

Ex. 1 (cont.): Learning noisily-embedded manifolds



(a) The data.



(b) Extracted structure.

Figure 1: “Averaging” the tubular segments in the data.

Ex. 2: Approximating a properly-higher-dim. ρ

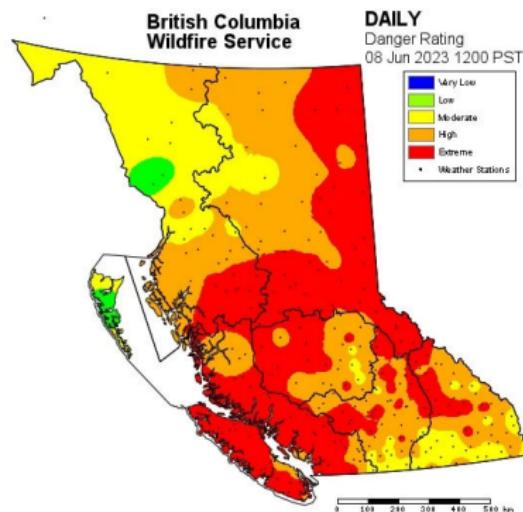


Figure 2: Wildfire danger map

Ex. 2: Approximating a properly-higher-dim. ρ

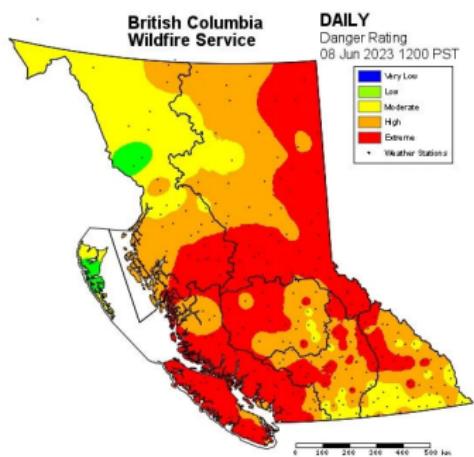
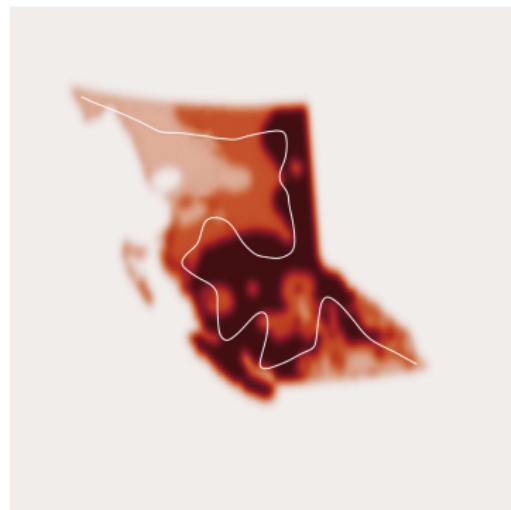


Figure 2: Example trajectory. (Is it “good?”)

Summary of some applications

- ▶ $m = 1, n \in \{2, 3\}$: Routing problems (wildfire drone, package delivery routes, “continuous” TSP)
- ▶ $m = 1, n \geq 2$: Trajectory inference (e.g. cryo-EM, scRNA-seq)
- ▶ $m = 2, n = 3$: Catalytic surface design
- ▶ $1 \leq m \ll n$: Certain generative learning problems

Setting up the Problem

► Source:

- $X \subseteq \mathbb{R}^m$ (compact)

► Target:

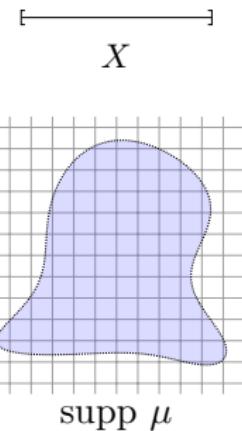
- $\mu \in \mathcal{P}_{\text{cpt}}(\mathbb{R}^n)$

► Optimization variable:

- $f : X \rightarrow \mathbb{R}^n$ (cont.)

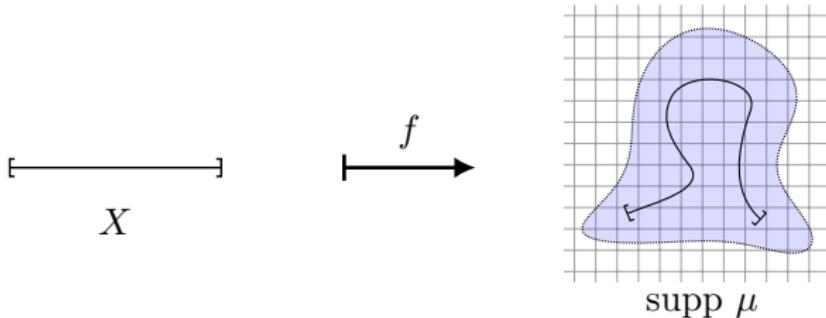
Setting up the Problem

- ▶ Source:
 - $X \subseteq \mathbb{R}^m$ (compact)
- ▶ Target:
 - $\mu \in \mathcal{P}_{\text{cpt}}(\mathbb{R}^n)$
- ▶ Optimization variable:
 - $f : X \rightarrow \mathbb{R}^n$ (cont.)



Setting up the Problem

- ▶ $X \subseteq \mathbb{R}^m$
- ▶ $\mu \in \mathcal{P}_{\text{cpt}}(\mathbb{R}^n)$
- ▶ $f : X \rightarrow \mathbb{R}^n$



How “close” is $f(X)$ to μ ?

- ▶ Want OT cost, but $f(X)$ a set
- ▶ Idea:

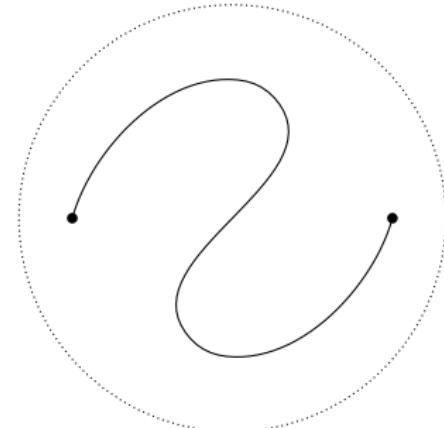
$$\mathcal{J}_p(f; \mu) = \inf_{\nu \in \mathcal{P}(f(X))} \mathbb{W}_p^p(\mu, \nu)$$

- ▶ Equivalently [7, Prop. 2.7]:

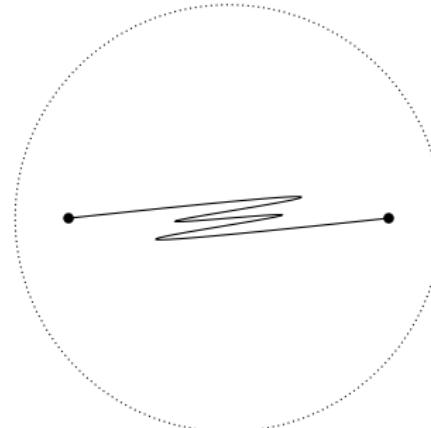
$$\begin{aligned}\mathcal{J}_p(f; \mu) &= \int_{\mathbb{R}^n} d^p(\omega, f(X)) \ d\mu(\omega) \\ &= \mathbb{E}_\mu[d^p(\omega, f(X))]\end{aligned}$$

Visualization

Q: Which shape better “fills” unit disk?



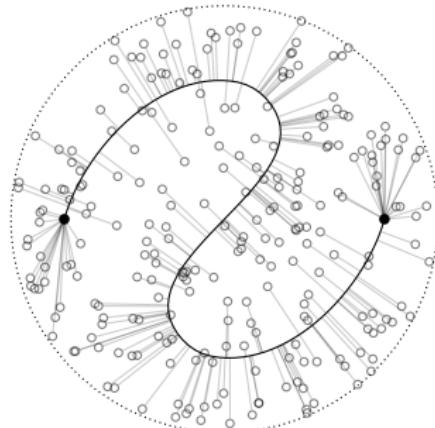
(a) One candidate



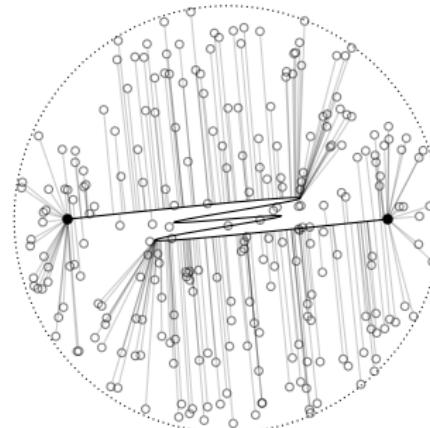
(b) ...And another

Visualization

Q: Which shape better “fills” unit disk?



(a) A “good” filling



(b) A “bad” filling

Quantifying complexity of f

- ▶ No complexity constraint \rightarrow degeneracy
- ▶ We use:

$$\begin{aligned}\mathcal{C}(f) &:= \|f\|_{W^{k,q}(X, \mathbb{R}^n)} \\ &= \left(\sum_{j=1}^n \sum_{|\alpha| \leq k} \|D^\alpha f_j\|_{L^q}^q \right)^{1/q}.\end{aligned}$$

- ▶ Examples:

(a) Cheap f



(b) Expensive f

(c) Expensive f

The “best” f

- ▶ For $\lambda > 0$, minimize

$$\boxed{\mathcal{J}_\lambda(f; \mu) \coloneqq \mathcal{J}_p(f; \mu) + \lambda \mathcal{C}(f).}$$

- ▶ Computing global solutions:
 - “Probably” NP-Hard
 - For $k, q = 1$, recover TSP as $\lambda \rightarrow 0$.
- ▶ How about local improvements?

Improving an f

Theorem (Informal)

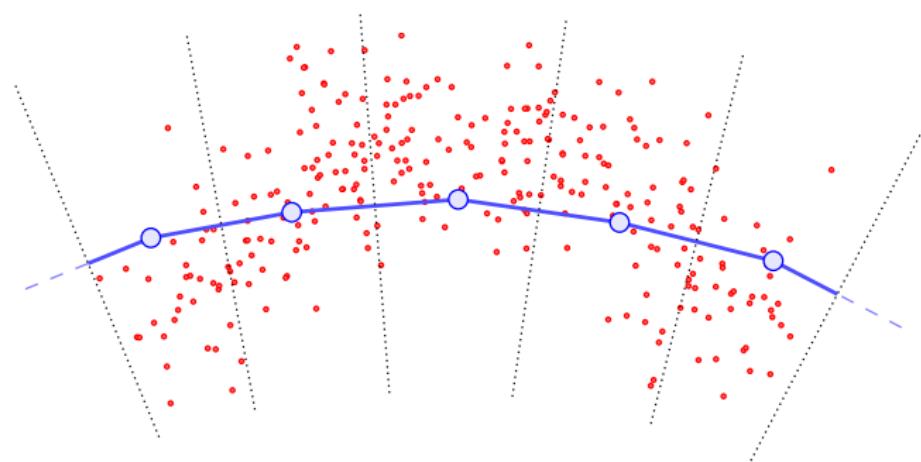
With some technical hypotheses, can get a vector field F and measure $\nu \in \mathcal{P}(f(X))$ such that for all $\xi \in C(f(X); \mathbb{R}^n)$,

$$\lim_{\varepsilon \rightarrow 0} \frac{\mathcal{J}_p(f + \varepsilon \xi; \rho) - \mathcal{J}_p(f; \rho)}{\varepsilon} = \int_{f(X)} -\langle F, \xi \rangle \, d\nu.$$

- ▶ F like (negative) “gradient” (sans regularity issues)
- ▶ $-\langle F, \xi \rangle_{L^2(\nu)}$ like directional derivative
- ▶ ν very simple; F more complicated

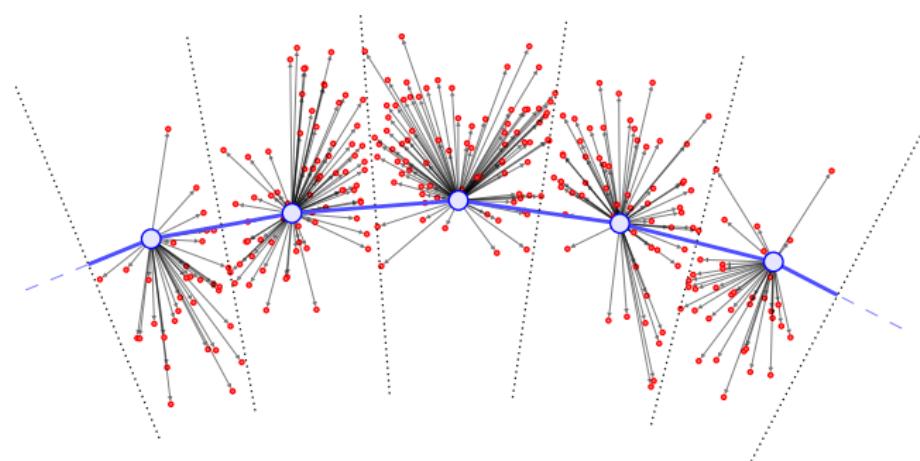
What is F ?

Discrete case easier to visualize:



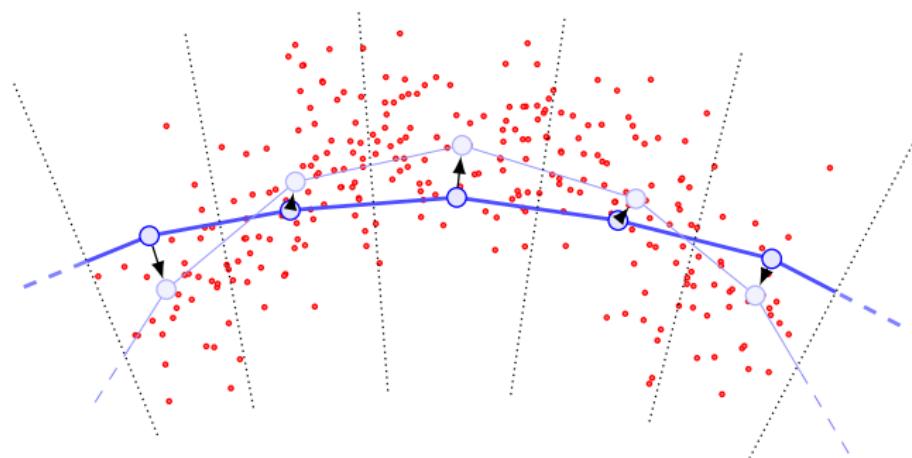
What is F ?

Discrete case easier to visualize: Compute $(p - 1)$ barycenter



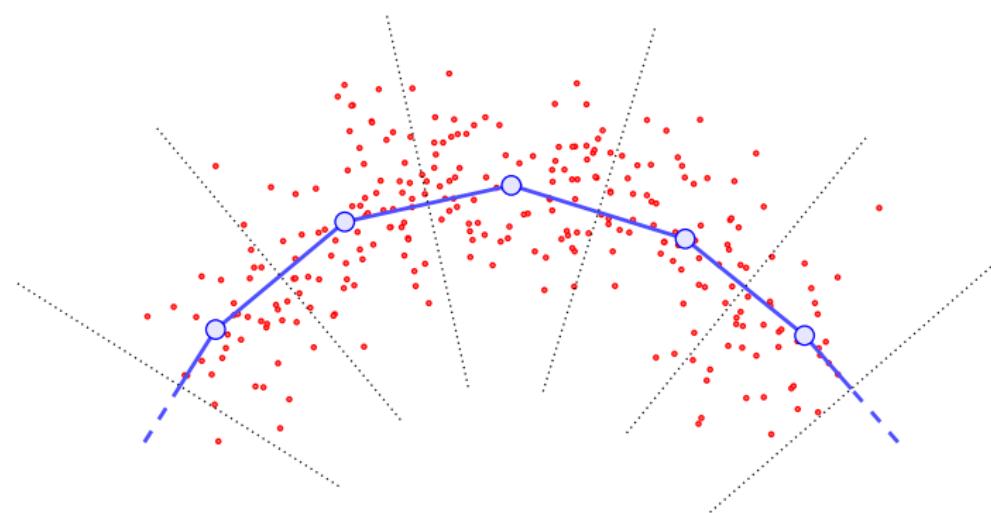
What is F ?

Discrete case easier to visualize: Compute $(p - 1)$ barycenter



What is F ?

Discrete case easier to visualize:



Visualizing F in cont. case

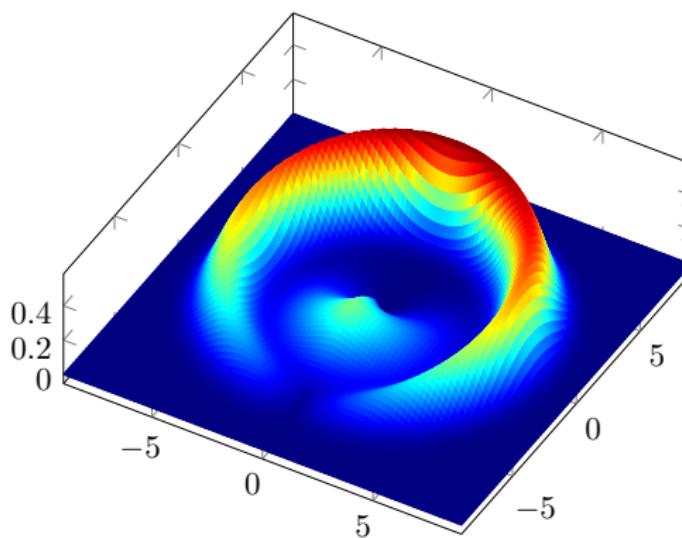


Figure 5: An example μ

Visualizing F in cont. case

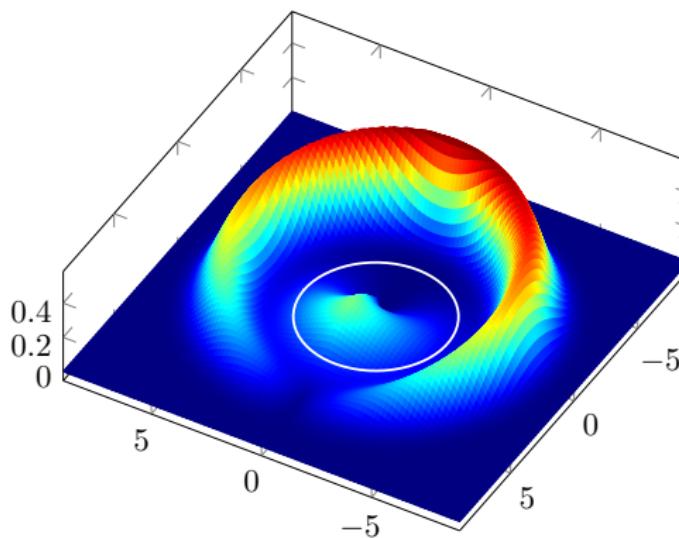


Figure 5: An example f approximating μ

Visualizing F in cont. case

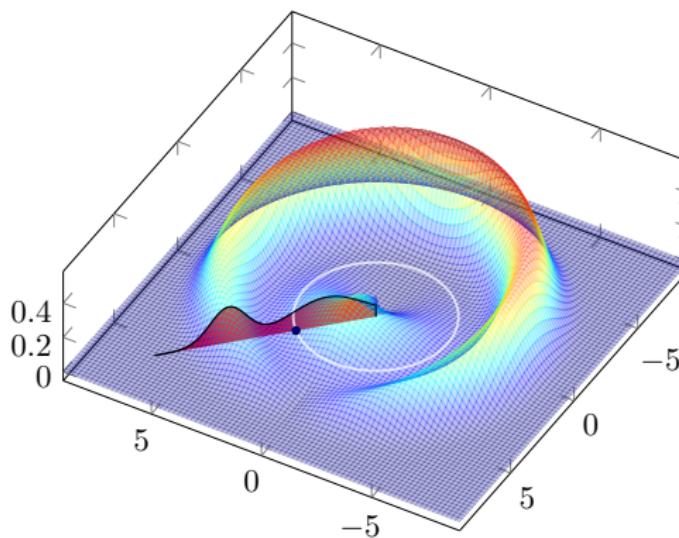
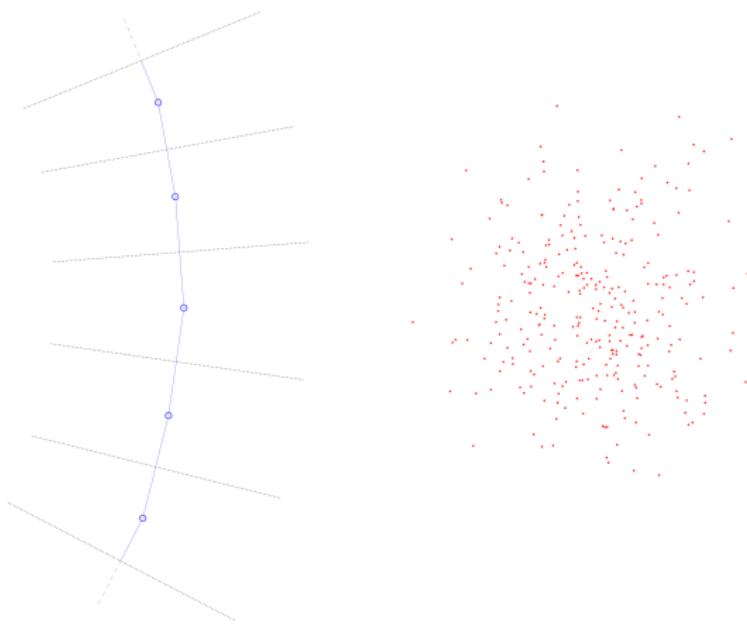


Figure 5: Slicing

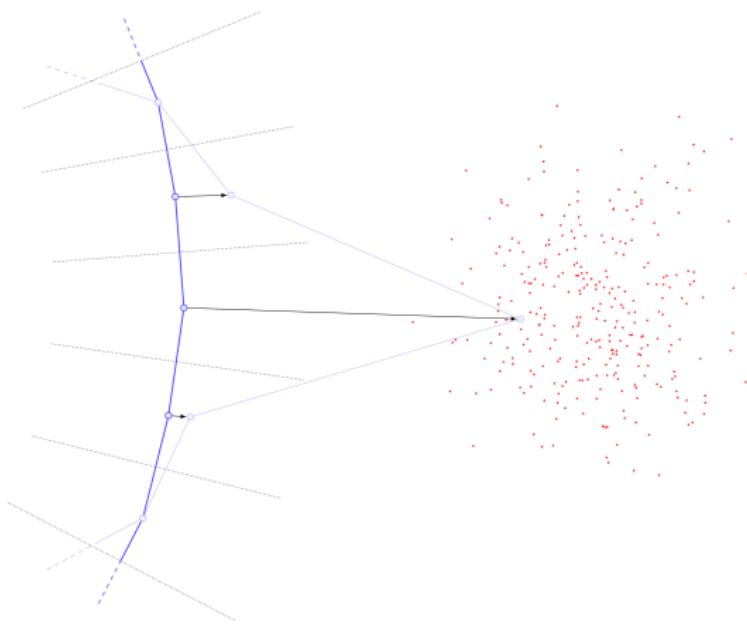
Overview

- ▶ Big picture:
 - Discretize f
 - Compute F ($= -\nabla \mathcal{J}_p$) and $-\nabla \mathcal{C}$
 - Optimize to get step size η
 - $f \leftarrow f + \eta(F - \lambda \nabla \mathcal{C})$
- ▶ Challenges:
 - C1. Discretization of f is delicate
 - C2. Efficient Voronoi cell assignments for F
 - C3. How to compute $-\nabla \mathcal{C}$?

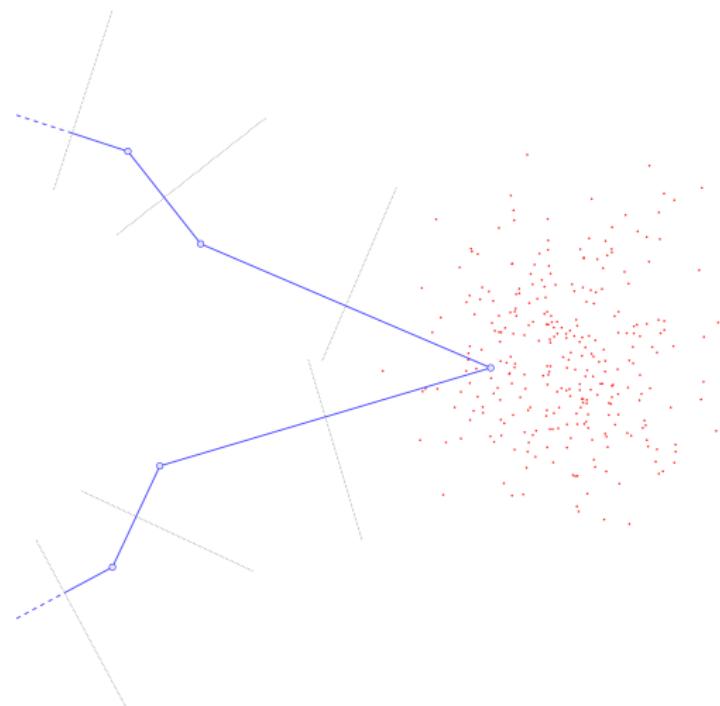
C1: Need evenly-spaced samples of f



C1: Need evenly-spaced samples of f



C1: Need evenly-spaced samples of f



C1: Evenly-spaced samples of f —our method

- ▶ After each iteration:

- Fit cubic spline f to samples
- Define: Arclength functional

$$L(f; a, b) = \int_a^b \sqrt{\sum_{j=1}^n (\dot{f}_j)^2} \, dt$$

- Compute total length ℓ
- Get evenly-spaced values l_i on $[0, \ell]$
- For given l_i , want t_i such that $L(f; 0, t_i) \approx l_i \dots$
- Binary search then polish w/ Newton's method

C1: Evenly-spaced samples of f , cont.

- ▶ Need: Efficient query method for arclength $L(f; 0, t)$
 - Quadrature a bit slow
 - [5] reduces $L(f; 0, t)$ to an elliptic integral explicitly solved in [3]
 - Reduction: need factorization into real quadratics

$$\sum_{j=1} (\dot{f}_j)^2 = Q_1(t)Q_2(t),$$

(exists if $\dot{f} \neq 0$; use fast root-finding algorithms)

- When $n = 2$: Get a stable, analytic formula via trick
 $q_1^2 + q_2^2 = (q_1 - iq_2)(q_1 + iq_2)$
- ▶ End result: Fast resampling of f

C2: Quickly computing F

- ▶ Continuous data: Special case μ uniform, $\text{supp } \mu$ PL
 1. Explicitly compute Voronoi diagram
 2. Fast triangular decomposition of $\text{supp } \mu$
 3. Triangles: F has analytic formula in terms of hypergeometric function
 4. Sum results
- ▶ Discrete data: Need faster Voronoi assignments
 - CPU-method: spatial-acceleration datastructures
 - GPU-method: brute-force

C2: CPU method, acceleration datastructures

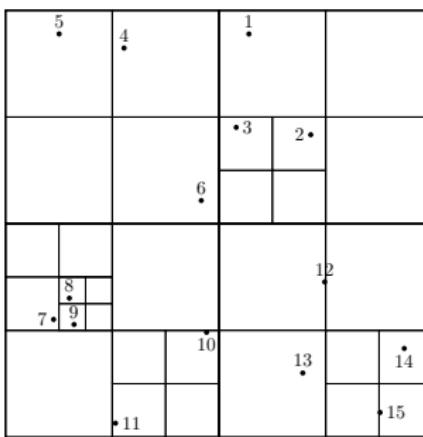


Figure 6: Example orthant subdivision for $M = 15$ samples of $\text{Unif}([0, 1]^2)$.

C2: CPU method, acceleration datastructures

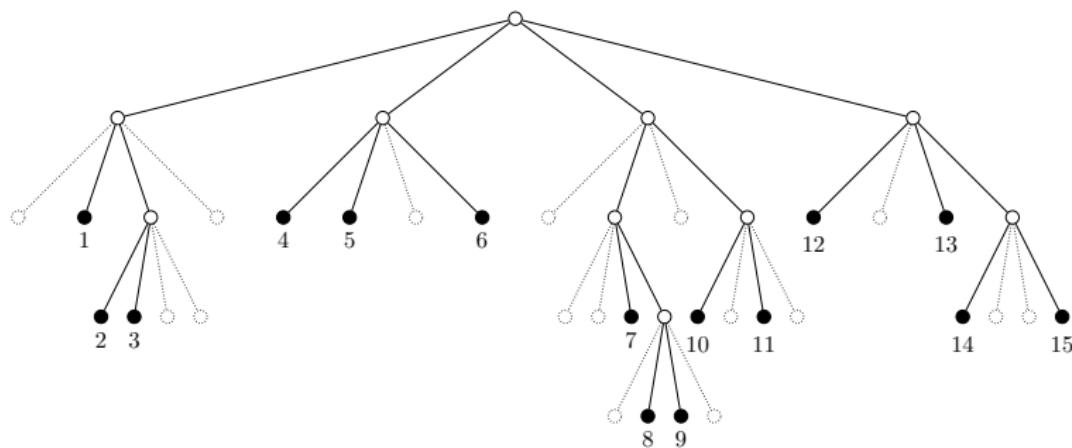


Figure 6: The tree datastructure encoding the quadrants shown previously.

C2: CPU method, acceleration datastructures

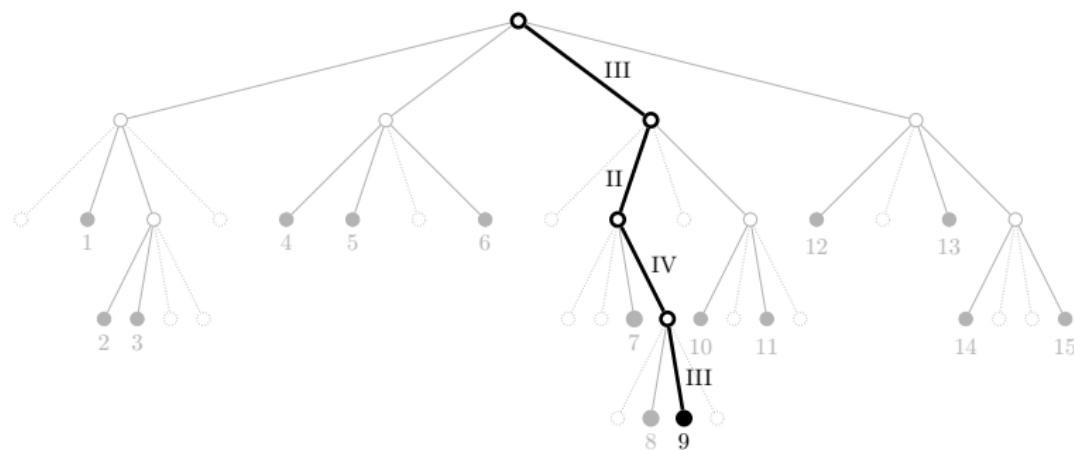


Figure 6: Associate lexicographic strings to each node, and permute input data array to be lex. sorted

C2: CPU method, acceleration datastructures

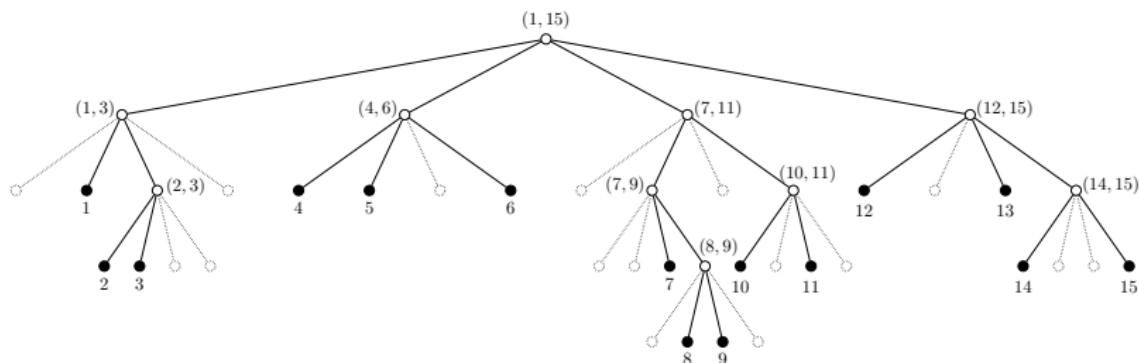


Figure 6: Annotate nodes of tree with range of descendants (also, diameter).

C2: CPU method, Performing the Voronoi Assignments

- ▶ With trees above, construct further k -d tree
- ▶ Core loop:
 1. Take data pt. v_i
 2. Query k -d tree for closest samples y_i^0, y_i^1 of f
 3. Let $r_i = |d(v_i, y_i^0) - d(v_i, y_i^1)|$ and compute
$$j_i := \lfloor \log_2 (r_i / \text{diam}(\text{node for } v_i)) \rfloor$$
 4. Slice trailing j_i entries off `lex_code`(v_i); yields ancestor a_i
 5. Fact: All descendants $(v_i, \dots, v_{i'})$ of a_i in same Voronoi cell as v_i
 6. Assign all $(v_i, \dots, v_{i'})$; let $i = i' + 1$ and loop

C2: CPU method, Pictures

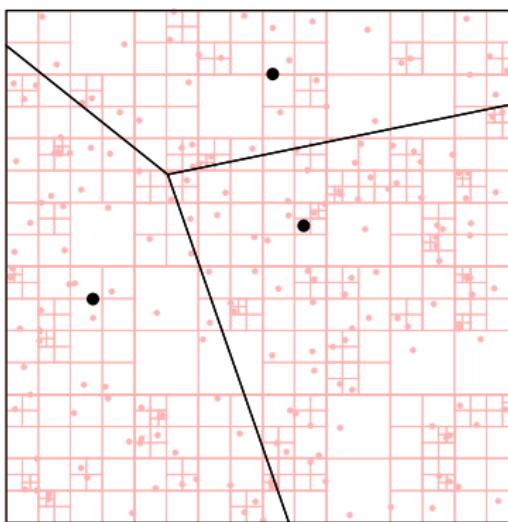


Figure 7: Starting configuration.

C2: CPU method, Pictures

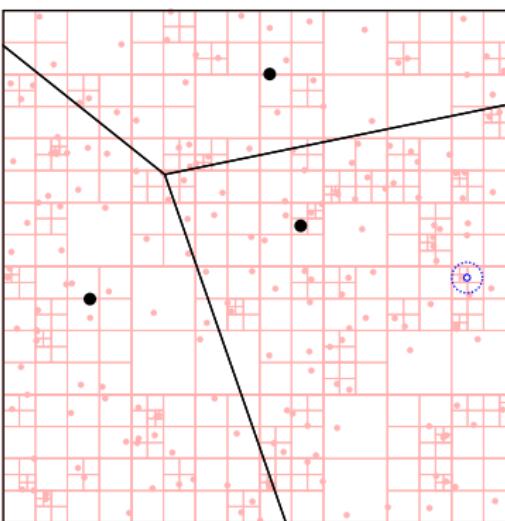


Figure 7: Select v_i .

C2: CPU method, Pictures

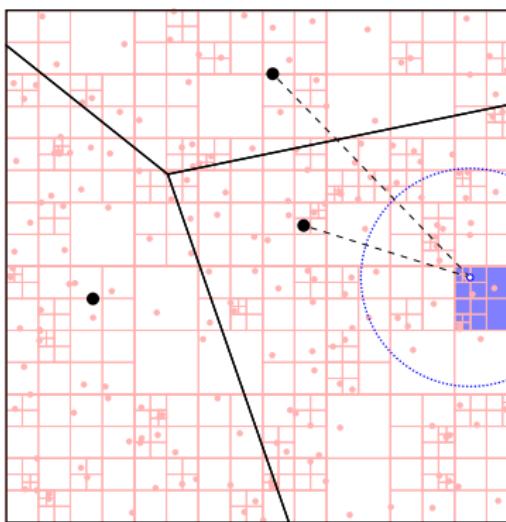


Figure 7: Compute ancestor $a_i \subseteq B_{r_i}(v_i)$

C2: CPU method, Benchmarking

M	Mean exec. time $\pm \sigma$ (ms)		Median (ms)		Mem. est. (MiB)		Allocs. est. (#)	
	Our alg.	<i>k</i> -d tree	Our alg.	<i>k</i> -d tree	Our alg.	<i>k</i> -d tree	Our alg.	<i>k</i> -d tree
$2.16 \cdot 10^5$	43 ± 4	45 ± 11	43	39	21.03	32.96	521697	864014
$5.12 \cdot 10^5$	76 ± 7	116 ± 25	76	107	36.70	78.13	879072	2048014
$8.00 \cdot 10^5$	102 ± 5	190 ± 35	103	184	48.83	122.07	1143060	3200014
$1.00 \cdot 10^6$	114 ± 6	242 ± 92	115	221	56.16	152.59	1297350	4000014
$1.20 \cdot 10^6$	126 ± 7	307 ± 148	127	281	62.81	181.11	1433556	4800014
$1.50 \cdot 10^6$	152 ± 13	398 ± 172	149	383	72.39	228.88	1627029	6000014
$1.80 \cdot 10^6$	161 ± 9	493 ± 273	164	461	81.83	274.66	1798515	7200014
$2.00 \cdot 10^6$	168 ± 10	550 ± 316	169	514	86.72	305.18	1906332	8000014
$2.50 \cdot 10^6$	196 ± 12	711 ± 477	198	619	99.70	381.47	2150112	10000014
$5.00 \cdot 10^6$	300 ± 23	1587 ± 1201	304	1304	155.41	762.94	3123312	20000014
$1.00 \cdot 10^7$	467 ± 30	3370 ± 2805	471	2838	245.37	1490	4500033	40000014

Table 1: Benchmarking for $\mu = \text{Unif}([0, 1]^2)$. M : # input data pts.
 $N = 100$: # Voronoi cell roots (also uniform).

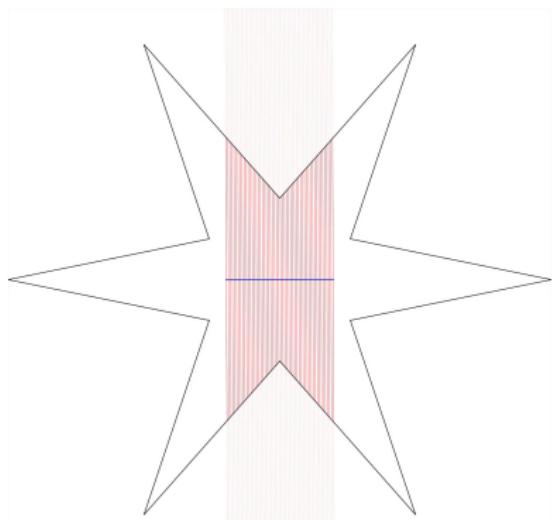
C3: Computing Sobolev gradient $-\nabla \mathcal{C}$

- ▶ In C1 we fit a cubic spline f
- ▶ In general: $f \notin W^{k,q}(X; \mathbb{R}^n)$
- ▶ \Rightarrow need new spline of order $k + 2$.
- ▶ Approach:
 1. Get B-Spline basis; compute $C^k(X; \mathbb{R}^n)$ spline interpolating resampled f
 2. Derivatives of all orders linear in spline coefficients
 3. Spline coefficients linear in fitted points
 4. Linear relationships can be precomputed very quickly (inverse of $(k + 2)$ -width banded matrix) *once* per loop
 5. \Rightarrow fast computation of derivatives of all orders

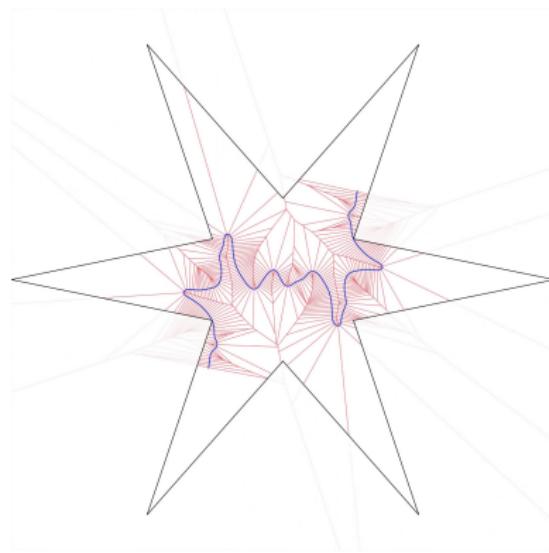
Bottom Line

- ▶ Runtime:
 - Resampling f evenly:
 - Fast for $n = 2$
 - Good for $n > 2$
 - Computing $F = -\nabla \mathcal{J}_p$:
 - Special continuous case: Very fast if $\text{supp } \mu$ convex; decent otherwise
 - Discrete case: Acceptable on CPU; extremely fast on GPU
 - Approximating $-\nabla \mathcal{C}$:
 - *Very* fast
- ▶ Memory:
 - Lightweight except discrete CPU method for $F = -\nabla \mathcal{J}_p$

Example numerics

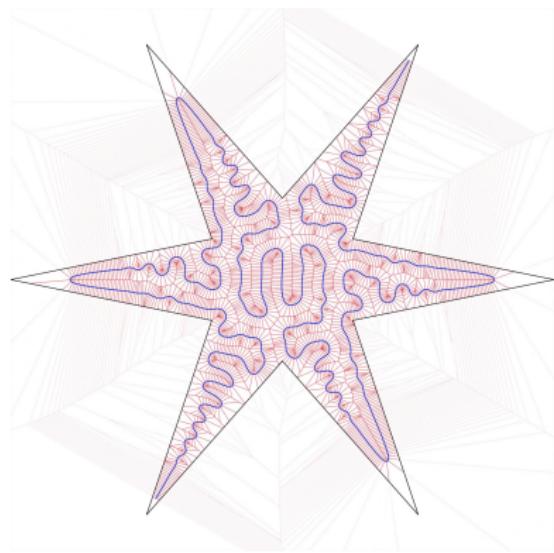


(a) $i = 1$

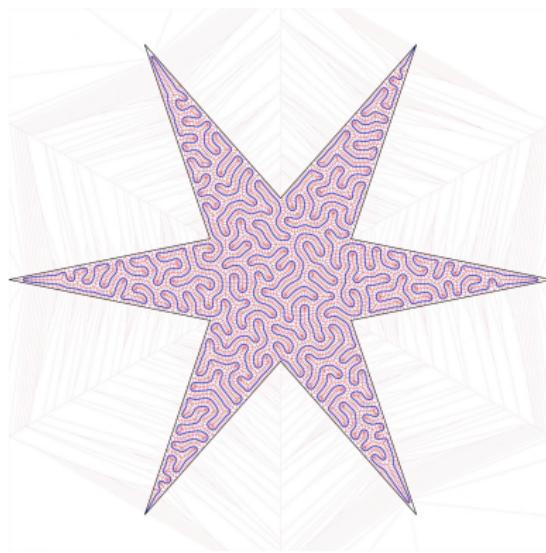


(b) $i = 150$

Example numerics

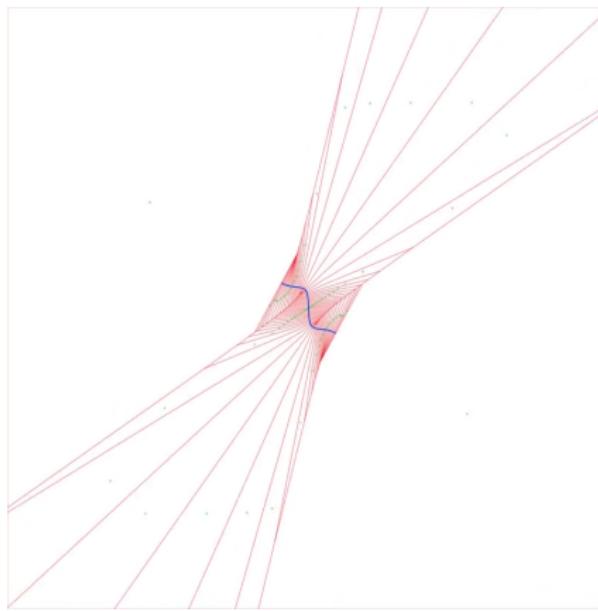


(a) $i = 300$

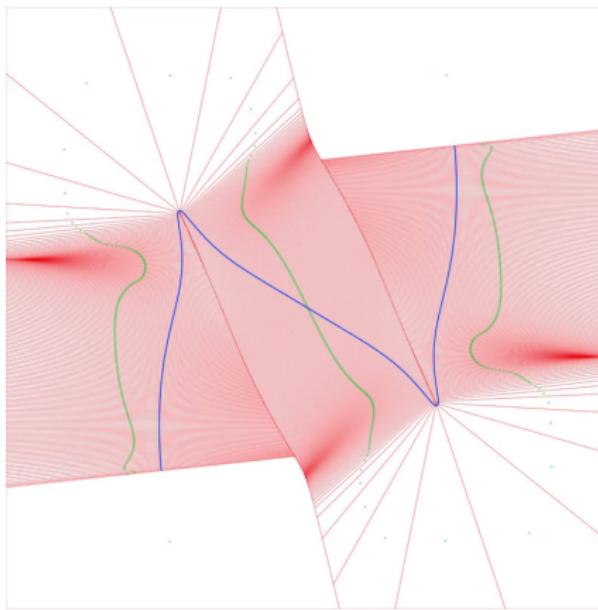


(b) $i = 1000$

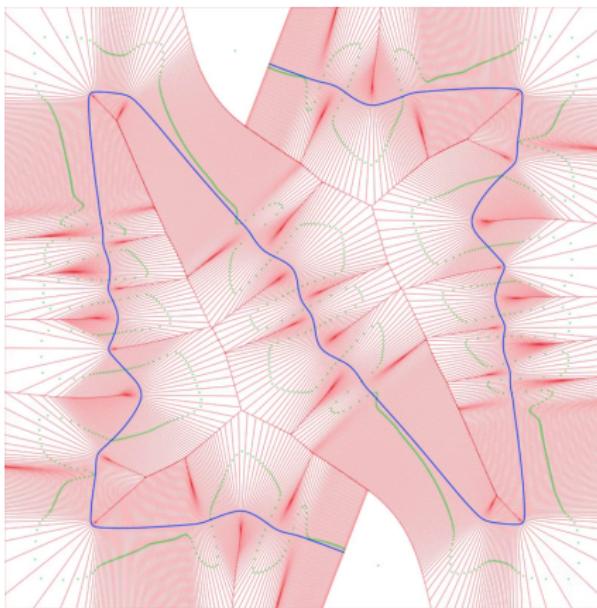
More simulations



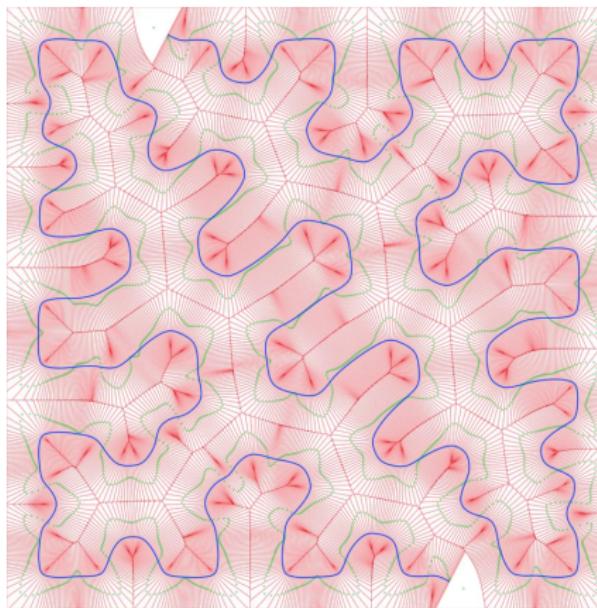
More simulations



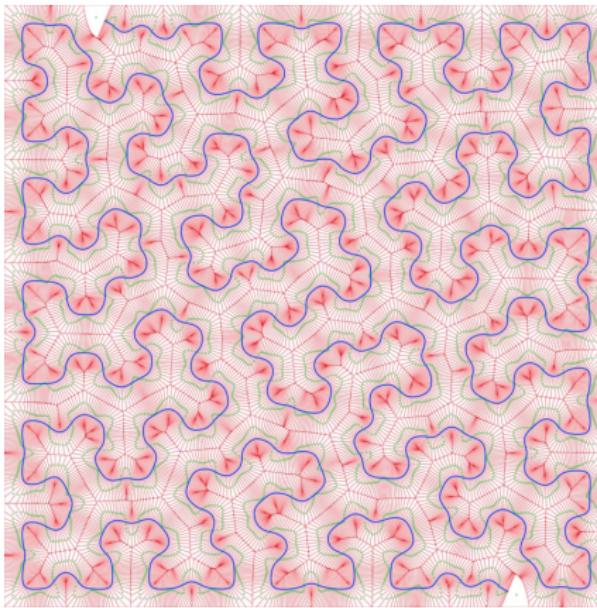
More simulations



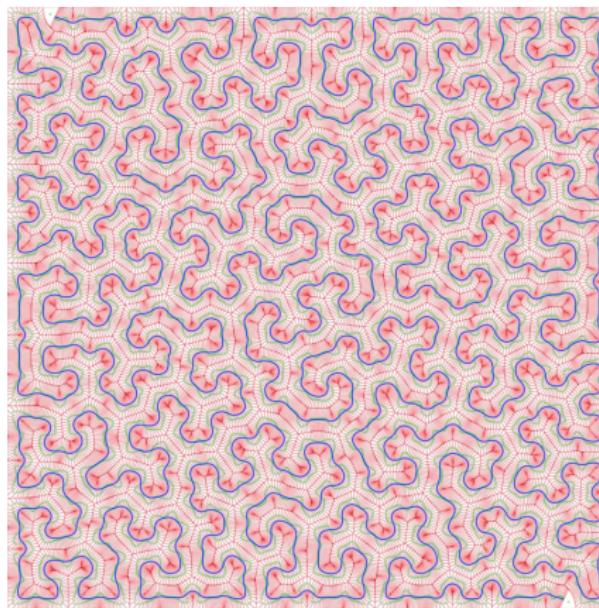
More simulations



More simulations



More simulations



Thank you for your attention!

References I

- [1] Giuseppe Buttazzo and Eugene Stepanov. “Optimal transportation networks as free Dirichlet regions for the Monge-Kantorovich problem”. In: *Annali della Scuola Normale Superiore di Pisa - Classe di Scienze* (2003).
- [2] Giuseppe Buttazzo, Edouard Oudet, and Eugene Stepanov. “Optimal Transportation Problems with Free Dirichlet Regions”. In: *Variational Methods for Discontinuous Structures*. 2002.
- [3] BC Carlson. “A table of elliptic integrals: Two quadratic factors”. In: *mathematics of computation* (1992).
- [4] Sylvain Delattre and Aurélie Fischer. “On principal curves with a length constraint”. In: *Annales de l'Institut Henri Poincaré, Probabilités et Statistiques* (Aug. 2020).
- [5] Hartmut Henkel. *Calculating the Cubic Bézier Arc Length by Elliptic Integrals*. 2014.

References II

- [6] Slav Kirov and Dejan Slepčev. “Multiple Penalized Principal Curves: Analysis and Computation”. en. In: *Journal of Mathematical Imaging and Vision* (Oct. 2017).
- [7] Forest Kobayashi, Jonathan Hayase, and Young-Heon Kim. “Monge-Kantorovich Fitting With Sobolev Budgets”. In: *arXiv* (Sept. 2024). eprint: 2409.16541.
- [8] A. Lemenant. “A presentation of the average distance minimizing problem”. In: *J. Math. Sci.* (Mar. 2012).
- [9] Xin Yang Lu and Dejan Slepčev. “Average-distance problem with curvature penalization for data parameterization: regularity of minimizers”. en. In: *ESAIM: Control, Optimisation and Calculus of Variations* (2021).
- [10] E. Paolini and E. Stepanov. “Qualitative Properties of Maximum Distance Minimizers and Average Distance Minimizers in R^n ”. In: *Journal of Mathematical Sciences* (July 2004).

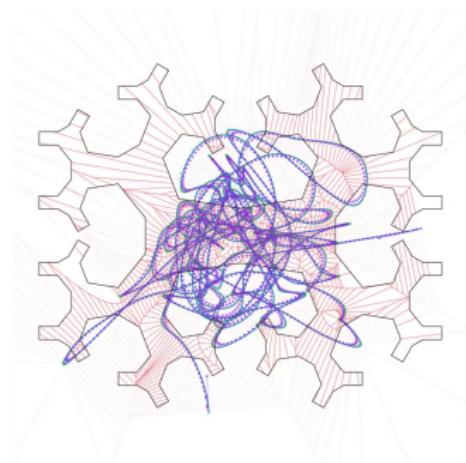
References III

- [11] Eugene Stepanov. “Partial Geometric Regularity of Some Optimal Connected Transportation Networks”. In: *J. Math. Sci.* (Jan. 2006).
- [12] Wenping Wang, Helmut Pottmann, and Yang Liu. “Fitting B-spline curves to point clouds by curvature-based squared distance minimization”. In: *ACM Trans. Graph.* (Apr. 2006).

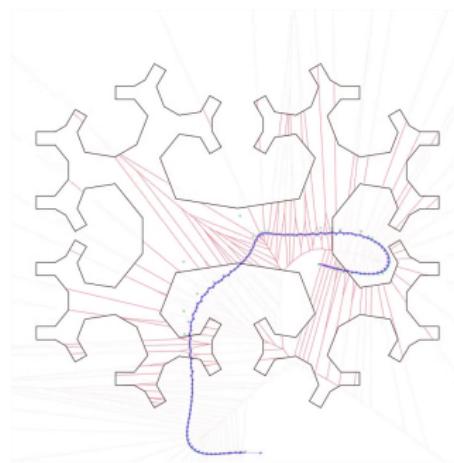
Generative Learning

- ▶ Soft Proposal: this problem gives loosely-analogous toy problem for some black-box models
- ▶ Like (regularized) WGAN, but
 - Learns only support of approximating measure (not parametrization)
 - Regularization on *generator*, not critic
- ▶ Gives a possible interpretation for what regularization “does”

A regularized “generator”

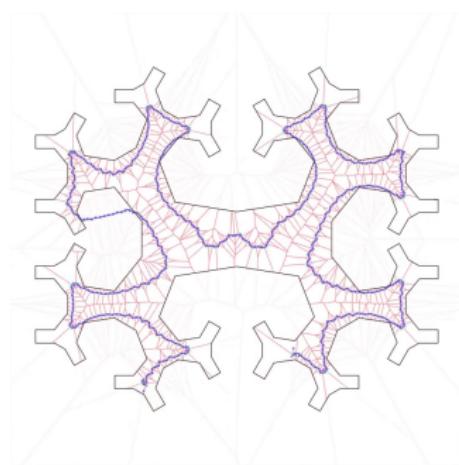


(a) $i = 1$

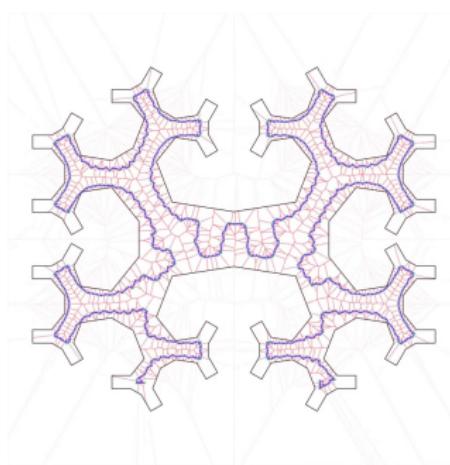


(b) $i = 110$

A regularized “generator”

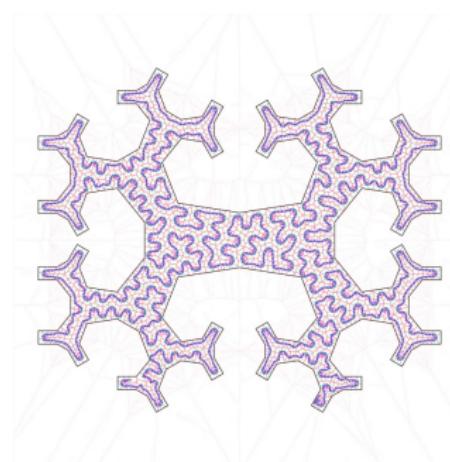


(a) $i = 800$



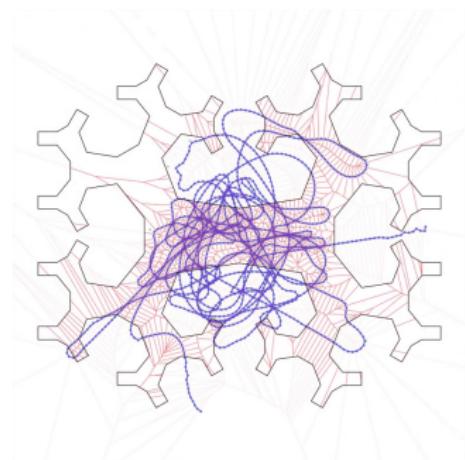
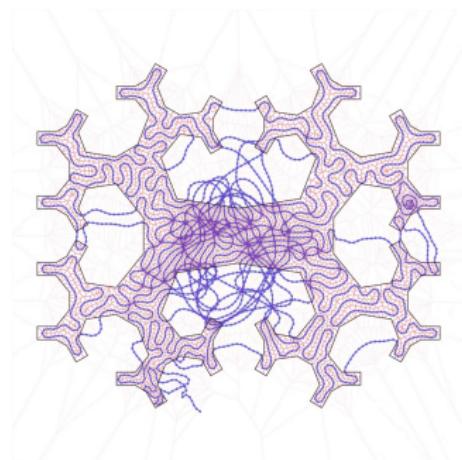
(b) $i = 1120$

A regularized “generator”

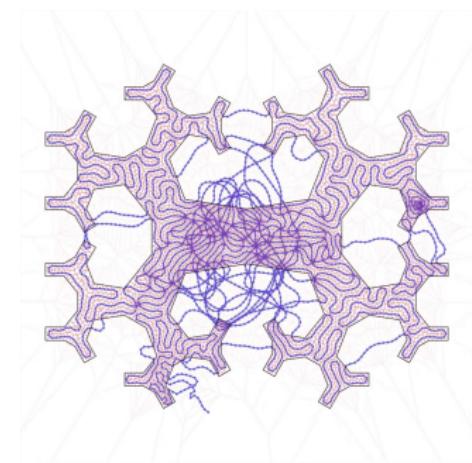
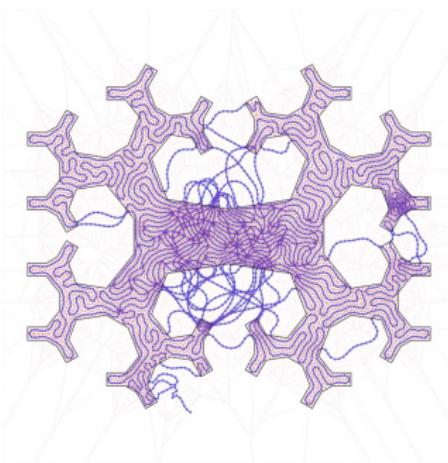


(a) $i = 1850$

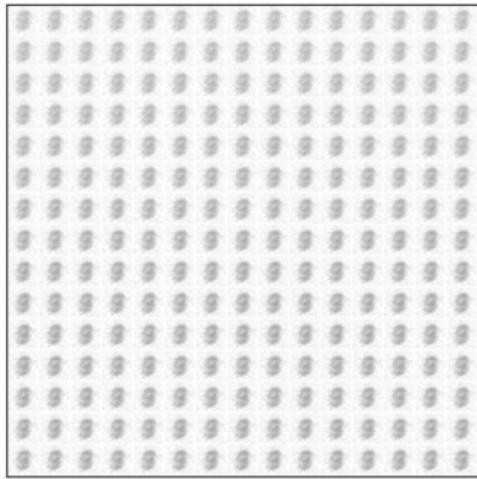
(cont.): Unregularized Generator

(a) $i = 110$ (b) $i = 800$

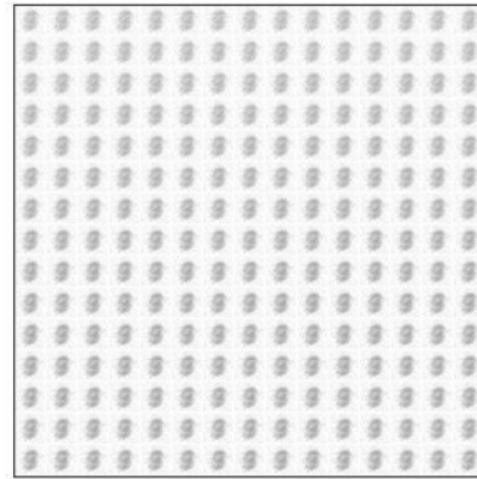
(cont.): Unregularized Generator

(a) $i = 1120$ (b) $i = 1850$

Proof of concept: training on MNIST



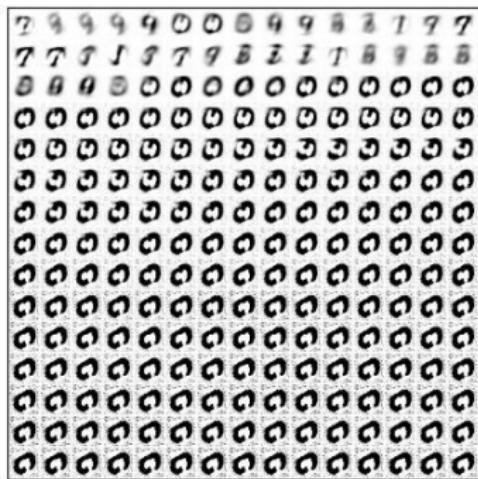
(a) 1 epoch (wd)



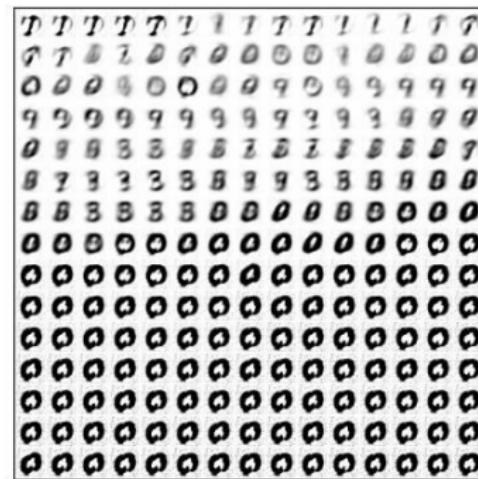
(b) 1 epoch (reg)

Figure 11: f sampled at 15^2 uniformly-spaced points on $[0, 1]$

Proof of concept: training on MNIST



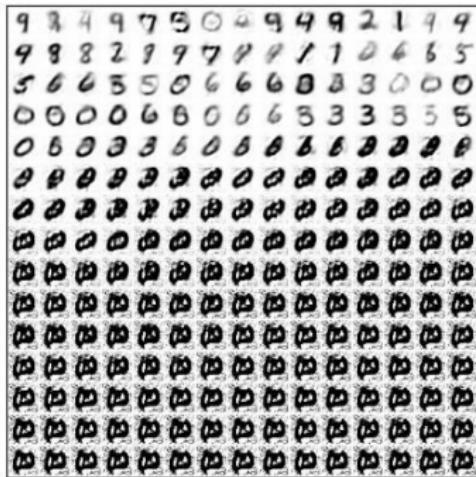
(a) 30 epochs (wd)



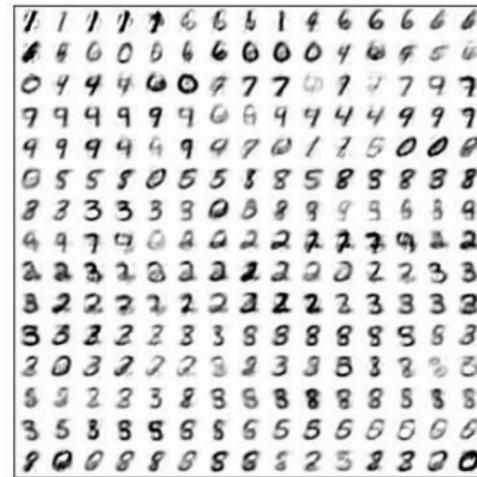
(b) 30 epochs (reg)

Figure 11: f sampled at 15^2 uniformly-spaced points on $[0, 1]$

Proof of concept: training on MNIST



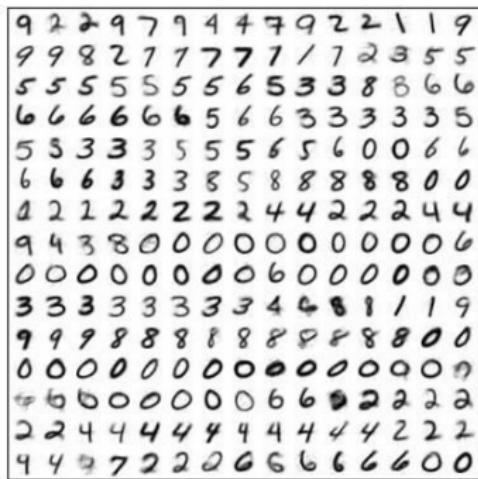
(a) 100 epoch (wd)



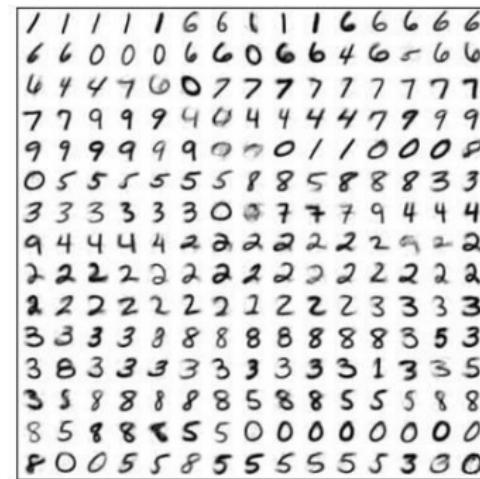
(b) 100 epoch (reg)

Figure 11: f sampled at 15^2 uniformly-spaced points on $[0, 1]$

Proof of concept: training on MNIST



(a) 1000 epochs (wd)



(b) 1000 epochs (reg)

Figure 11: f sampled at 15^2 uniformly-spaced points on $[0, 1]$