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Introduction

> Goal: “Efficiently” “approximate” n-d measures via m-surfaces
m “Approximate” in what sense?
m “Efficient” in what sense?

» Outline:
m Motivation
m Defining terms
m Problem Statement + Previous works
m Local improvement

m Numerics; ML Applications
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Example: Extracting signal from noisy data
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Figure: Noisy observations of a 1d process

eon Kim (UBC)




Example: Extracting signal from noisy data

Figure: Guess for a generating curve
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Example: Approximating p € P(R?) by a curve

Fire danger rating

The fire danger rating (the risk of a wildfire starting) for the province is
updated daily at approximately 2 pm.

British Columbia DALY

Wildfire Service Danger Rating
) 08 Jun 2023 1200 PST

Figure: Wildfire danger map
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Example: Approximating p € P(R?) by a curve

Fire danger rating

The fire danger rating (the risk of a wildfire starting) for the province is
updated daily at approximately 2 pm.

British Columbia DAILY
Wildfire Service Danger Rating
2023 1200 PST

Figure: Example trajectory




“Approximation”
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How to quantify approximation?

_

-
Q: Which shape better “fills” the disk? Why?
L

(a) One candidate (b) ...And another

Forest Ko




“Approximation”
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How to quantify approximation?

-
Q: Which shape better “fills” the disk? Why?
L

One idea...
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Quantifying “approximation,” cont.

Given

> QCRY,

> [ XCR™—Q
Let

1 .
gif) = @/Qd(w,lmg(f)) dw.

oint w i h (UW) and Young-Heon Kim (UBC)
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“Approximation”

Quantifying “approximation,” cont.

Given

> QCRY,

> [ XCR™—Q
Let

1 .
90 = 7 / d(w, mg(f)) dw,
= Eunit(o)[d(w, img(f))]. (a)

General p € P1(Q)..7

ork with Jonathan Hayase (UW) and Young-Heon Kim (UBC)
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General ,0 € P(Q)
Ip(fip) = Jgd(w lmg(f)) dp(w).

(a) Now a “bad” approximation (b) Now a “good” approximation
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Summary of “Approximation”
For p > 1, p € Pp(9), let

9(fip) = / P (w, img(f)) dp(w)

» ...Connection to OT?




“Approximation”
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Summary of “Approximation”
For p > 1, p € Pp(9), let

9(fip) = / P (w, img(f)) dp(w)

» ...Connection to OT?

9p(f3p) = nf  Wh(p, ')

i
v'e€P(img(f))

» Next: Defining “Efficiency”

ork with Jonathan Hayase (UW) and Young-Heon Kim (UBC)




Rationale for “efficiency”

» Need to bound complexity of f, or else problem degenerates

and Young




Rationale for “efficiency”

» Need to bound complexity of f, or else problem degenerates

oint i 0 ( (UW) and Young-Heon Kim (UBC
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Rationale for “efficiency”

» Need to bound complexity of f, or else problem degenerates

oint w i g (UW) and Young-Heon Kim (UBC)
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Controlling “complexity” of approximation

> Restrict to some function class F
» Choose some C : F — [0,00) (“complexity functional”)
» Enforce “efficiency” via:

m “Soft penalty:” Given A > 0,

min [9p(f5p) + AC(f)]

m “Hard constraint:” Given £ > 0,

min G, (f;p)

e(f)<e”

rk with Jonathan H. e (UW) and Young-Heon Kim (UBC)




Some previously-studied C’s
> 1d trees: C(f) = H'(img(f))

m Buttazzo, Oudet, and Stepanov, 2002; many more (see review in
Lemenant, 2012)

m Doesn’t generalize obviously to m > 1
> “Classical” principal curves: C(f) = length(f)

m Hastie and Stuetzle, 1989; Kégl et al., 2000; Kirov and Slepcev,
2017; Lu and Slepcev, 2013, 2016, 2020; Delattre and Fischer,
2018

m (Some works add curvature penalty; see Lu and Slepcev 2012)

rk with Jonathan H. (UW) and Young-Heon Kim (UBC)




Our “smoothing” C

» Use W*4(X;R") Sobolev norm

n 1/4
) = I oy = (Z 3 ||D@fj||iq) |

i=1a|<k

» (Technical hypotheses: X, Q “nice”; 1< q<oo; kq>m)
> Similar to smoothing splines: C(f) = >27_; >, = 1D fjll .-
m Typically assume labeled data

m Some approaches similar to ours (Wang, Pottman, and Liu, 2006)

rk with Jonathan H. (UW) and Young-Heon Kim (UBC)




Comparison to C(f) = length(f)

» Role of parametrization?

m length(f) — invariant

m For k> 1, || fllyyk.a(x.q) severely parametrization-dependent.

and Young




Comparison to C(f) = length(f)

» Role of parametrization?

m length(f) — invariant

m For k> 1, || fllyyk.a(x.q) severely parametrization-dependent.
» Tractability of Analysis?

m length(f): Analysis can be subtle

m Sobolev norm: Analysis can be brutal.

(UW) and




“Efficiency”
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Comparison to C(f) = length(f)

» Role of parametrization?

m length(f) — invariant

m For k> 1, || fllyk.q(x,0) severely parametrization-dependent.
» Tractability of Analysis?

m length(f): Analysis can be subtle

m Sobolev norm: Analysis can be brutal.
» Sobolev norm in applications?

m Stronger “smoothing” of noise

m Routing problems: no instantaneous turns; fuel efficiency

m Numerics: very hard, but doable

with Jonathan H. e (UW) and Young-Heon Kim (UBC)
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Informal summary of problem

r 1
Given: Goal:
1. A measure p € P(Q), » Minimize: §,(f;p)
2. A budget £ > 0, > Subject to: C(f) < ¢ where
3. A space WF(X;Q) C(f) = ”fHW’WJ(X;Q)
L _

» Givens: p, {, X, Q
» Decision variable: f

» Tweakable parameters:
B p21

m C: k,q (subject to 1 < ¢ < oo and kg > m)

ork with Jonathan Hayase (UW) and Young-Heon Kim (UBC)
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Flavor of problem

> g,
m Continuity: v Joint in f,p
m Convexity/concavity: X Neither

» Optimizers:
m Exist v
m ..but not necessarily unique
m Characterization: harder than in length case

» Local improvements?

and Young
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Case Study: Local Improvements
M B

Question: Given J extra budget, can we improve ¢, (f)?

L

oint i : (UW) and Young-Heon Kim (UBC)
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The Problem
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Case Study: Local Improvements
M B

Question: Given J extra budget, can we improve ¢, (f)?

L
» Can’t just “extend” f past 9f(X)..

supp(p) supp(p)

(a) f(X) (b) Extended f(X)
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Case Study: Local Improvements
M B

Question: Given J extra budget, can we improve ¢, (f)?

L
» Can’t just “extend” f past 9f(X)..

» Interior modifications? Challenging when k > 1
}o() /\

(a) Initial f (b) length(f) case (c) Sobolev case

'k with Jonathan H. e (UW) and Young-Heon Kim (UBC)
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Trying “Gradient Flow” of some kind?

M Bl
Theorem (Informal)
Let f € C(X;Q) and £ € C(X;R™). Then if
1.p>1, or
2. p =1 with a mild hypothesis,
there exists a well-defined vector field Fr and measure g on X s.t.

lim gp(f + 5§§P) - gp(f)

e—0 9

- /X (Fe€) dpse(a).

With some extra hypotheses, F¢, pe can be made independent of €.
L

» F: moves f toward “barycenters” of fibers

» But, can badly lack regularity

yith Jonathan Hayase (UW) and Young-Heon Kim (UBC)
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Can handle complicated modifications

(a) Initial f (b) Ex. perturbation 1 (c) Ex. perturbatlon 2

L ON'®

(a) Another initial f (b) Ex. perturbation 1 ) Ex. perturbation 2

Example 1:

Example 2:

(UW) and
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Problem: F¢ inherits little regularity

Let f(x) = (z,23sin(1/z)) with Q a square.

ork with Jonathan H (UW) and Y eon Kim (UBCQC)
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Problem: F¢ inherits little regularity

Let f(x) = (z,23sin(1/z)) with Q a square (axes not to scale!).
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Good News

» Improvements exist:
M B
Theorem (Informal)
If there exists any & s.t. Fr is nontrivial, then there exists a

local Ee C* decreasing Jp.
L _

» F¢ works for discretized f, p
» Framework of I useful in other problems

m Forthcoming work (O’Brien, K., Kim): Resolved a notable open
problem for tree case

(UW) and
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Numerics
» Special case: p uniform on 2d, PL set
m Precise closed-form computation for F¢ (no monte-carlo)!
» Case of discrete p, general dimension:
m Paper to come...

m Blog post explaining part:

Forest Ko shi (UBC)
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Example numerics

(b) i = 150
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Example numerics

(a) i = 300 (b) i = 1000
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Generative Learning

» Soft Proposal: Monge-Kantorovich Fitting gives
loosely-analogous toy problem for some black-box models

> Like (regularized) WGAN, but

m Learns only support of approximating measure (not
parametrization)

m Regularization on generator, not critic

» Gives a possible interpretation for what regularization “does”

oint i : (UW) and Young-Heon Kim (UBC)
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(b) i =110

A regularized “generator”




A regularized “generator”

(a) i = 800 (b) i = 1120

k with




Numerics

[e]e]e] le]ele)

A regularized “generator”

rk with Jonathan H. JW) and Yo on Kim (UBC)
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(cont.): Unregularized Generator
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(cont.): Unregularized Generator

(a) 1 =1120 (b) i = 1850

t work with Jonathan H UW) and Yo on Kim (UBC)




Comparison on MNIST

(a) 1 epoch (wd) (b) 1 epoch (reg)

Figure: Visualization of f sampled at 152 uniformly-spaced points on [0,1]




Comparison on MNIST
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(b) 30 epochs (reg)

(a) 30 epochs (wd)

Figure: Visualization of f sampled at 15> uniformly-spaced points on [0, 1]
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Comparison on MNIST
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(b) 100 epoch (reg)

(a) 100 epoch (wd)

Figure: Visualization of f sampled at 15> uniformly-spaced points on [0, 1]

ng-Heon Kim (UBC)

>
@
S
=S
=)
o
2
@
>
3
fo]
q
«
b
3
=
)
|
B
I
S
=




%
5
z

0000080

Comparison on MNIST
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(b) 1000 epochs (reg)

(a) 1000 epochs (wd)

Figure: Visualization of f sampled at 152 uniformly-spaced points on [0, 1]

eon Kim (UBC)

e (UW) and Y

Jonathan H.

1
B
£




Numerics &

000000e

Thank you!
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