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Introduction
I Goal: “Efficiently” “approximate” n-d measures via m-surfaces

“Approximate” in what sense?

“Efficient” in what sense?

I Outline:
Motivation

Defining terms

Problem Statement + Previous works

Local improvement

Numerics; ML Applications
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Example: Extracting signal from noisy data

Figure: Noisy observations of a 1d process
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Example: Extracting signal from noisy data

Figure: Guess for a generating curve
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Example: Approximating ρ ∈ P(R2) by a curve

Figure: Wildfire danger map
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Example: Approximating ρ ∈ P(R2) by a curve

Figure: Example trajectory
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How to quantify approximation?

Q: Which shape better “fills” the disk? Why?

(a) One candidate (b) …And another
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How to quantify approximation?

Q: Which shape better “fills” the disk? Why?

One idea…

(a) A “good” filling (b) A “bad” filling
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Quantifying “approximation,” cont.
Given
I Ω ⊆ Rn,
I f : X ⊆ Rm → Ω

Let

J(f) = 1
|Ω|

ˆ
Ω

d(ω, img(f)) dω.

(a)

(b)
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Quantifying “approximation,” cont.
Given
I Ω ⊆ Rn,
I f : X ⊆ Rm → Ω

Let

J(f) = 1
|Ω|

ˆ
Ω

d(ω, img(f)) dω,

= EUnif(Ω)[d(ω, img(f))].

General ρ ∈ P1(Ω)…?

(a)

(b)
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General ρ ∈ P(Ω)
Jp(f ; ρ) =

´
Ω d(ω, img(f)) dρ(ω).

(a) Now a “bad” approximation (b) Now a “good” approximation
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Summary of “Approximation”
For p ≥ 1, ρ ∈ Pp(Ω), let

Jp(f ; ρ) =
ˆ

Ω
dp(ω, img(f)) dρ(ω)

I …Connection to OT?

Jp(f ; ρ) = inf
ν′∈P(img(f))

Wp
p(ρ, ν′)

I Next: Defining “Efficiency”
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Rationale for “efficiency”
I Need to bound complexity of f , or else problem degenerates
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Controlling “complexity” of approximation
I Restrict to some function class F
I Choose some C : F → [0, ∞) (“complexity functional”)
I Enforce “efficiency” via:

“Soft penalty:” Given λ > 0,

min
f∈F

[Jp(f ; ρ) + λC(f)]

“Hard constraint:” Given ` ≥ 0,

min
C(f)≤`

Jp(f ; ρ)
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Some previously-studied C’s
I 1d trees: C(f) = H1(img(f))

Buttazzo, Oudet, and Stepanov, 2002; many more (see review in
Lemenant, 2012)

Doesn’t generalize obviously to m > 1

I “Classical” principal curves: C(f) = length(f)
Hastie and Stuetzle, 1989; Kégl et al., 2000; Kirov and Slepčev,
2017; Lu and Slepčev, 2013, 2016, 2020; Delattre and Fischer,
2018

(Some works add curvature penalty; see Lu and Slepčev 2012)

Forest Kobayashi (UBC) Joint work with Jonathan Hayase (UW) and Young-Heon Kim (UBC)
Monge-Kantorovich Fitting Under a Sobolev Budget



Intro “Approximation” “Efficiency” The Problem Numerics & ML

Our “smoothing” C

I Use W k,q(X;Rn) Sobolev norm

C(f) := ‖f‖W k,q(X,Rn) =
( n∑

j=1

∑
|α|≤k

‖Dαfj‖q
Lq

)1/q

.

I (Technical hypotheses: X, Ω “nice”; 1 < q < ∞; kq > m)
I Similar to smoothing splines: C(f) =

∑n
j=1

∑
|α|=k ‖Dαfj‖L2

Typically assume labeled data

Some approaches similar to ours (Wang, Pottman, and Liu, 2006)
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Comparison to C(f) = length(f)
I Role of parametrization?

length(f) → invariant

For k > 1, ‖f‖W k,q(X;Ω) severely parametrization-dependent.

I Tractability of Analysis?
length(f): Analysis can be subtle

Sobolev norm: Analysis can be brutal.

I Sobolev norm in applications?
Stronger “smoothing” of noise

Routing problems: no instantaneous turns; fuel efficiency

Numerics: very hard, but doable
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Informal summary of problem

Given:
1. A measure ρ ∈ P(Ω),
2. A budget ` ≥ 0,
3. A space W k,q(X; Ω)

Goal:
I Minimize: Jp(f ; ρ)
I Subject to: C(f) ≤ ` where

C(f) = ‖f‖W k,q(X;Ω)

I Givens: ρ, `, X, Ω
I Decision variable: f

I Tweakable parameters:
Jp: p ≥ 1

C: k, q (subject to 1 < q < ∞ and kq > m)
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Flavor of problem
I Jp:

Continuity: 3 Joint in f, ρ

Convexity/concavity: 7 Neither

I Optimizers:
Exist 3

…but not necessarily unique

Characterization: harder than in length case

I Local improvements?
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Case Study: Local Improvements

Question: Given δ extra budget, can we improve Jp(f)?

I Can’t just “extend” f past ∂f(X)…
I Interior modifications? Challenging when k > 1

(a) Initial f

O(δ)

(b) length(f) case (c) Sobolev case
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Case Study: Local Improvements

Question: Given δ extra budget, can we improve Jp(f)?

I Can’t just “extend” f past ∂f(X)…

supp(ρ)
Ω

(a) f(X)

supp(ρ)
Ω

(b) Extended f(X)

I Interior modifications? Challenging when k > 1

(a) Initial f

O(δ)

(b) length(f) case (c) Sobolev case
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Trying “Gradient Flow” of some kind?

Theorem (Informal)
Let f ∈ C(X; Ω) and ξ ∈ C(X;Rn). Then if

1. p > 1, or
2. p = 1 with a mild hypothesis,

there exists a well-defined vector field Fξ and measure µξ on X s.t.

lim
ε→0

Jp(f + εξ; ρ) − Jp(f)
ε

=
ˆ

X

−〈Fξ, ξ〉 dµξ(x).

With some extra hypotheses, Fξ, µξ can be made independent of ξ.

I Fξ moves f toward “barycenters” of fibers
I But, can badly lack regularity
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Can handle complicated modifications
Example 1:

(a) Initial f (b) Ex. perturbation 1 (c) Ex. perturbation 2

Example 2:

(a) Another initial f (b) Ex. perturbation 1 (c) Ex. perturbation 2
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Problem: Fξ inherits little regularity
Let f(x) = (x, x3 sin(1/x)) with Ω a square.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
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Problem: Fξ inherits little regularity
Let f(x) = (x, x3 sin(1/x)) with Ω a square (axes not to scale!).
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Good News
I Improvements exist:

Theorem (Informal)
If there exists any ξ s.t. Fξ is nontrivial, then there exists a
local ξ̃ ∈ C∞ decreasing Jp.

I Fξ works for discretized f , ρ

I Framework of Fξ useful in other problems
Forthcoming work (O’Brien, K., Kim): Resolved a notable open
problem for tree case
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Numerics
I Special case: ρ uniform on 2d, PL set

Precise closed-form computation for Fξ (no monte-carlo)!

I Case of discrete ρ, general dimension:
Paper to come…

Blog post explaining part:
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Example numerics

(a) i = 1 (b) i = 150
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Example numerics

(a) i = 300 (b) i = 1000
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Generative Learning
I Soft Proposal: Monge-Kantorovich Fitting gives

loosely-analogous toy problem for some black-box models
I Like (regularized) WGAN, but

Learns only support of approximating measure (not
parametrization)

Regularization on generator, not critic

I Gives a possible interpretation for what regularization “does”
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A regularized “generator”

(a) i = 1 (b) i = 110
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A regularized “generator”

(a) i = 800 (b) i = 1120
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A regularized “generator”

(a) i = 1850
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(cont.): Unregularized Generator

(a) i = 110 (b) i = 800
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(cont.): Unregularized Generator

(a) i = 1120 (b) i = 1850
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Comparison on MNIST

(a) 1 epoch (wd) (b) 1 epoch (reg)

Figure: Visualization of f sampled at 152 uniformly-spaced points on [0, 1]
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Comparison on MNIST

(a) 30 epochs (wd) (b) 30 epochs (reg)

Figure: Visualization of f sampled at 152 uniformly-spaced points on [0, 1]
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Comparison on MNIST

(a) 100 epoch (wd) (b) 100 epoch (reg)

Figure: Visualization of f sampled at 152 uniformly-spaced points on [0, 1]
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Comparison on MNIST

(a) 1000 epochs (wd) (b) 1000 epochs (reg)

Figure: Visualization of f sampled at 152 uniformly-spaced points on [0, 1]
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Thank you!
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