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Gameplan:
1. Intro

“What’s a knot?”

“When are knots ‘equivalent?’ How can we tell?”

2. Motivation
Unknotting moves & “categorification”

3. The problem
Tameness & wildness

The recipe!
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What is a knot?
Definition (Informal)
Twirl a string around and “fuse” the ends.
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What is a knot?
Definition (Informal)
Twirl a string around and “fuse” the ends.

How to formalize?
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Prereq. Definition — Homeomorphism
Definition (Homeomorphism)
A homeomorphism is an f : X → Y such that f is bijective and
continuous with f−1 also continuous. (i.e. f does no cutting/gluing).
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Prereq. Definition — Homeomorphism
Definition (Homeomorphism)
A homeomorphism is an f : X → Y such that f is bijective and
continuous with f−1 also continuous. (i.e. f does no cutting/gluing).

Example 1:

X

f1

Y
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Prereq. Definition — Homeomorphism
Definition (Homeomorphism)
A homeomorphism is an f : X → Y such that f is bijective and
continuous with f−1 also continuous. (i.e. f does no cutting/gluing).

Example 2:

X

f2

Y
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Prereq. Definition — Homeomorphism
Definition (Homeomorphism)
A homeomorphism is an f : X → Y such that f is bijective and
continuous with f−1 also continuous. (i.e. f does no cutting/gluing).

Non-example 1: “Cutting” (f is not continuous)

X

f3

Y
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Prereq. Definition — Homeomorphism
Definition (Homeomorphism)
A homeomorphism is an f : X → Y such that f is bijective and
continuous with f−1 also continuous. (i.e. f does no cutting/gluing).

Non-example 2: “Gluing” (f−1 is not continuous)

Y

f4

X
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Prereq. Definition — Homeomorphism
Definition (Homeomorphism)
A homeomorphism is an f : X → Y such that f is bijective and
continuous with f−1 also continuous.

▶ Homeomorphisms preserve how things look “locally”
▶ X and Y are said to be homeomorphic if there’s a

homeomorphism f : X → Y
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Prereq. Definition — Embeddings
Definition (Embedding)
f : X → Y is an embedding if f is a homeomorphism between X and
f(X). (Since f must be injective we typically write f : X ↪→ Y )

Example 1: X is an X shape, Y is R2

f
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Prereq. Definition — Embeddings
Definition (Embedding)
f : X → Y is an embedding if f is a homeomorphism between X and
f(X). (Since f must be injective we typically write f : X ↪→ Y )

Example 2: X is [0, 1], Y is R

0 1 f(1) f(0)
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Prereq. Definition — Embeddings
Definition (Embedding)
f : X → Y is an embedding if f is a homeomorphism between X and
f(X). (Since f must be injective we typically write f : X ↪→ Y )

Example 3: X is [0, 1], Y is R2

f
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Prereq. Definition — Embeddings
Definition (Embedding)
f : X → Y is an embedding if f is a homeomorphism between X and
f(X). (Since f must be injective we typically write f : X ↪→ Y )

Non-example: X and f(X) not homeomorphic (note the gluing!)

f
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Prereq. Definition — Embeddings
Definition (Embedding)
f : X → Y is an embedding if f is a homeomorphism between X and
f(X). (Since f must be injective we typically write f : X ↪→ Y )

▶ Takeaway: An embedding stuffs a copy of X into Y

▶ How can we use this to define knots?
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Knots!
Definition (Knot)
A knot is an embedding f : S1 ↪→ Y . (For now assume Y = R3).
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Knots!
Definition (Knot)
A knot is an embedding f : S1 ↪→ Y . (For now assume Y = R3).

Example 1:

K(3,1)

Figure: The “(3, 1)” knot
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Knots!
Definition (Knot)
A knot is an embedding f : S1 ↪→ Y . (For now assume Y = R3).

Example 2:

K(7,2)

Figure: The “(7, 2)” knot
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Knots!
Definition (Knot)
A knot is an embedding f : S1 ↪→ Y . (For now assume Y = R3).

Non-example 1: f is not an embedding (“cutting”)

f

Figure: A “broken” knot
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Knots!
Definition (Knot)
A knot is an embedding f : S1 ↪→ Y . (For now assume Y = R3).

Non-example 2: f is not an embedding (“gluing”)

f

Figure: A “broken” knot
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Knot equivalence
Definition (Equivalence of Embeddings in General)
Let f0, f1 : X → Y be embeddings. We say that f0 is equivalent to f1
if there exists a homeomorphism h : Y → Y such that h ◦ f0 = f1.
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Knot equivalence
Definition (Equivalence of Embeddings in General)
Let f0, f1 : X → Y be embeddings. We say that f0 is equivalent to f1
if there exists a homeomorphism h : Y → Y such that h ◦ f0 = f1.

Example: Consider two embeddings of an X shape.

(a) f0(X) (b) f1(X)
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Knot equivalence
Definition (Equivalence of Embeddings in General)
Let f0, f1 : X → Y be embeddings. We say that f0 is equivalent to f1
if there exists a homeomorphism h : Y → Y such that h ◦ f0 = f1.

Example: These are equivalent. The h would look something like

h
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Knot equivalence
Definition (Equivalence of Embeddings in General)
Let f0, f1 : X → Y be embeddings. We say that f0 is equivalent to f1
if there exists a homeomorphism h : Y → Y such that h ◦ f0 = f1.

Equivalence is heavily dependent on Y .
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Knot equivalence
Definition (Equivalence of Embeddings in General)
Let f0, f1 : X → Y be embeddings. We say that f0 is equivalent to f1
if there exists a homeomorphism h : Y → Y such that h ◦ f0 = f1.

Equivalence is heavily dependent on Y .
Example 1: In R2, all embeddings of S1 are equivalent. Even
this can be turned into a normal circle!
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Knot equivalence
Definition (Equivalence of Embeddings in General)
Let f0, f1 : X → Y be embeddings. We say that f0 is equivalent to f1
if there exists a homeomorphism h : Y → Y such that h ◦ f0 = f1.

Equivalence is heavily dependent on Y .
Example 2: This embedding is “nontrivial” in a thickened
torus, but not in R3
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Knot equivalence
Definition (Equivalence of Embeddings in General)
Let f0, f1 : X → Y be embeddings. We say that f0 is equivalent to f1
if there exists a homeomorphism h : Y → Y such that h ◦ f0 = f1.

Equivalence is heavily dependent on Y .
Example 3: All “nice” f : S1 ↪→ R4 are equivalent! (Proof:
Ask at end if we have time)

In fact. . . in most “nice” cases, knotting can only occur when
dim(Y ) − dim(X) = 2

Forest Kobayashi
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Knot equivalence
Definition (Equivalence of Embeddings in General)
Let f0, f1 : X → Y be embeddings. We say that f0 is equivalent to f1
if there exists a homeomorphism h : Y → Y such that h ◦ f0 = f1.

Situation for f : S1 ↪→ R3 is the most studied
Example: First two are equivalent, but not to the third

Forest Kobayashi
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Determining Equivalence: Difficulty #1
▶ Problem: Working with homeomorphisms explicitly is incredibly

unergonomic.

▶ Desire: A rigorous way to work with knots only using pictures
(no equations!)

▶ Solution: Regular Diagrams and Reidemeister’s Theorem
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▶ Desire: A rigorous way to work with knots only using pictures
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Regular Diagrams
Definition (Regular Diagram)
A regular diagram for a knot f : S1 ↪→ R3 has

1. Finitely-many crossing points,
2. Only two strands interacting at any given crossing,
3. Only “transverse” crossings.
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Regular Diagrams
Definition (Regular Diagram)
A regular diagram for a knot f : S1 ↪→ R3 has

1. Finitely-many crossing points,
2. Only two strands interacting at any given crossing,
3. Only “transverse” crossings.

3 Allowed 7 Not allowed

Figure: Example of axiom 1
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Regular Diagrams
Definition (Regular Diagram)
A regular diagram for a knot f : S1 ↪→ R3 has

1. Finitely-many crossing points,
2. Only two strands interacting at any given crossing,
3. Only “transverse” crossings.

3 Allowed 7 Not allowed

Figure: Example of axiom 2
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Regular Diagrams
Definition (Regular Diagram)
A regular diagram for a knot f : S1 ↪→ R3 has

1. Finitely-many crossing points,
2. Only two strands interacting at any given crossing,
3. Only “transverse” crossings.

3 Allowed 7 Not allowed

single point of crossing

Figure: Example of axiom 3
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Important note
Not every knot has a regular diagram.

Figure: This one doesn’t!
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Which do?
Definition (Polygonal knot)
Let f : S1 ↪→ R3. If f is a finite union of straight-line segments, we
say f is a polygonal knot.

Forest Kobayashi
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Which do?
Definition (Polygonal knot)
Let f : S1 ↪→ R3. If f is a finite union of straight-line segments, we
say f is a polygonal knot.

Example:
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Which do?
Definition (Polygonal knot)
Let f : S1 ↪→ R3. If f is a finite union of straight-line segments, we
say f is a polygonal knot.

Theorem
If f : S1 ↪→ R3 is polygonal, then f admits a regular diagram.

Proof: Use the finiteness

Forest Kobayashi
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Tame & Wild Knots
Definition (Tameness)
Let f : S1 ↪→ R3. Then if f is equivalent to a polygonal knot, we say
f is tame. If there exists no polygonal equivalent, we say f is wild.
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Tame & Wild Knots
Definition (Tameness)
Let f : S1 ↪→ R3. Then if f is equivalent to a polygonal knot, we say
f is tame. If there exists no polygonal equivalent, we say f is wild.

Example tame knot:

∼=

Forest Kobayashi
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Tame & Wild Knots
Definition (Tameness)
Let f : S1 ↪→ R3. Then if f is equivalent to a polygonal knot, we say
f is tame. If there exists no polygonal equivalent, we say f is wild.

Important property:
▶ Tame knots are in equivalence classes of knots with regular

diagrams.
▶ Why does this matter? Well. . .
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Almost there! Equivalence of Diagrams
Definition
We say two regular diagrams D0, D1 are equivalent iff there exist a
finite sequence of the following moves taking D0 to D1:

∼ ∼ ∼
Figure: The “Reidemeister moves”

Not relevant for today, but I like to denote these by の (no; [nofl]), ゆ
(yu; [jWff

B]), and め (me [mefl]), respectively.1

1IPA from Wiktionary.
Forest Kobayashi
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Equivalence of equivalences
Theorem (Reidemeister)
Let f0, f1 : S1 ↪→ R3 be tame, and let D0, D1 be regular diagrams
representing the equivalence classes of f0 and f1, respectively. Then
D0 ∼= D1 as diagrams iff f0 ∼= f1 as embeddings.

▶ Much more computationally tractable!
▶ . . . But actually still incredibly difficult for large examples (even

an NP solution seems out of reach for now; [Lac16])
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Equivalence of equivalences
Theorem (Reidemeister)
Let f0, f1 : S1 ↪→ R3 be tame, and let D0, D1 be regular diagrams
representing the equivalence classes of f0 and f1, respectively. Then
D0 ∼= D1 as diagrams iff f0 ∼= f1 as embeddings.

▶ Much more computationally tractable!
▶ . . . But actually still incredibly difficult for large examples (even

an NP solution seems out of reach for now; [Lac16])
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Determining Equivalence: Difficulty # 2
▶ Problem: Reidemeister-based algorithms are massively inefficient.
▶ Solution?

Seemingly-unrelated Q: In 20 seconds or less, which of
the following are true?

1. 5(33 · 11)2 = 2 · (72 + 33 − 8)

2. − 2
(
√

47 + 1
47 )3

= 47 − 1
472

3. 3x4 +(x+3)(x2 +2x+2)+ 2
3(x−x2) = 2

(
x4 + 3

2x(x2 − 3x)
)

+3x

1. Left is odd, right is even

2. Left is negative, right is positive

3. Leading coefficients don’t match
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Determining Equivalence: Difficulty # 2
▶ Problem: Reidemeister-based algorithms are massively inefficient.
▶ Solution? Seemingly-unrelated Q: In 20 seconds or less, which of

the following are true?
1. 5(33 · 11)2 = 2 · (72 + 33 − 8)
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(
√
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Knot Invariants
▶ Takeaway: Coarse heuristics can save time.
▶ Inspired by this:

Definition (Knot Invariant)
A knot invariant assigns “nice” values to knots such that equivalent
knots are guaranteed to take the same value.

▶ Examples: Colouring invariants, knot polynomials, etc.

Forest Kobayashi
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Example: Jones Polynomial
Definition (Jones Polynomial, Kauffman Bracket version)
Consider a formal polynomial in x derived from a regular diagram
using the following recursive simplification process:

Rule 1:

[ ]
x + x−1

Forest Kobayashi
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Example: Jones Polynomial
Definition (Jones Polynomial, Kauffman Bracket version)
Consider a formal polynomial in x derived from a regular diagram
using the following recursive simplification process:

Rule 2:

 · · ·


 =

(
−x2 − x−2

)k−1

︸ ︷︷ ︸
k copies

1

Forest Kobayashi
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Example: Jones Polynomial
Definition (Jones Polynomial, Kauffman Bracket version)
Consider a formal polynomial in x derived from a regular diagram
using the following recursive simplification process:

This yields a powerful invariant called the Jones polynomial.

Forest Kobayashi
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What is the Jones polynomial “doing?”

▶ Possibly more fruitful question: What is it not doing?

Definition (Mutation)
Let D0 be a diagram. Select some region A of D0 such that the knot
intersects ∂A in four places. “Rotate” A by “180◦” and call the
resulting diagram D1. This move changing D0 into D1 is called
mutation.

A

A

Forest Kobayashi
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What is the Jones polynomial “doing?”
▶ Possibly more fruitful question: What is it not doing?

Definition (Mutation)
Let D0 be a diagram. Select some region A of D0 such that the knot
intersects ∂A in four places. “Rotate” A by “180◦” and call the
resulting diagram D1. This move changing D0 into D1 is called
mutation.

A

A
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Cont.
▶ The Jones polynomial cannot distinguish between diagrams

differing by a mutation.

▶ Observation: mutations sort of look like an action of D4.
▶ Many similar rules cause problems with other invariants.
▶ Speculation: Can we get group structure here?

Forest Kobayashi
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Cont.
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▶ Observation: mutations sort of look like an action of D4.
▶ Many similar rules cause problems with other invariants.
▶ Speculation: Can we get group structure here?
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My attempt
▶ Use combinatorial encodings.

Definition
The signed Gauss code is a full encoding of an (oriented) n-crossing
diagram using 6n symbols.

Example: 1+
u , 2+

o , 3+
u , 1+

o , 2+
u , 3+

o

1+ 2+ 3+
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My attempt
▶ Use combinatorial encodings.

Definition
The signed Gauss code is a full encoding of an (oriented) n-crossing
diagram using 6n symbols.

Example: 1+
u , 2+

o , 3+
u , 1+

o , 2+
u , 3+

o

1+ 2+ 3+
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My attempt, cont.
▶ Reidemeister moves can be formulated as permutations on these

strings
▶ . . . As can mutations and other similar moves.
▶ Typical move looks like “swap the ordering of crossing 5 and

crossing 7”

Forest Kobayashi
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The problem
▶ What does “swap crossing 5 and crossing 7” mean if our diagram

only has 3 crossings total. . . ?
▶ Desire: A way to think of all tame knots as if they have

countably-many crossings

▶ Solution: Add them!

Forest Kobayashi
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The problem
▶ What does “swap crossing 5 and crossing 7” mean if our diagram

only has 3 crossings total. . . ?
▶ Desire: A way to think of all tame knots as if they have

countably-many crossings
▶ Solution: Add them!
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How?
▶ Can’t use Reidemeister’s theorem because it assumes finiteness.

Need to work directly
▶ Recall: Definition of equivalence

Definition (Equivalence of Embeddings in General)
Let f0, f1 : X → Y be embeddings. We say that f0 is equivalent to f1
if there exists a homeomorphism h : Y → Y such that h ◦ f0 = f1.

▶ Recall: Key properties of homeomorphisms are bijectivity and
continuity both ways
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When life gives you metrics, make metricade
The idea is approximation. Lemmas we’ll use:

Lemma
Let (fk)∞

k=1 be a sequence of uniformly convergent continuous
functions. Then limk→∞ fk is continuous.

Lemma
Let X be compact and Y a metric space. Then if f : X → Y is
bijective and continuous, it is also a homeomorphism.

▶ Idea: Use Lemma 1 to get continuity of f in hypothesis of
Lemma 2
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functions. Then limk→∞ fk is continuous.
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First result (kind of silly)
Corollary
Let X be compact, and for each k ∈ N, let fk : X → Y be an
embedding. Suppose that the fk converge uniformly to some f . Then
if f is injective, it’s also an embedding.

Example:

Figure: f1
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First result (kind of silly)
Corollary
Let X be compact, and for each k ∈ N, let fk : X → Y be an
embedding. Suppose that the fk converge uniformly to some f . Then
if f is injective, it’s also an embedding.

Example:

Figure: f2

Forest Kobayashi
On Performing Countably-Many Reidemeister Moves



Preamble Intro Motivation Countable Reid. Moves

First result (kind of silly)
Corollary
Let X be compact, and for each k ∈ N, let fk : X → Y be an
embedding. Suppose that the fk converge uniformly to some f . Then
if f is injective, it’s also an embedding.

Example:

Figure: f3

Forest Kobayashi
On Performing Countably-Many Reidemeister Moves



Preamble Intro Motivation Countable Reid. Moves

First result (kind of silly)
Corollary
Let X be compact, and for each k ∈ N, let fk : X → Y be an
embedding. Suppose that the fk converge uniformly to some f . Then
if f is injective, it’s also an embedding.

Example:

Figure: f4

Forest Kobayashi
On Performing Countably-Many Reidemeister Moves



Preamble Intro Motivation Countable Reid. Moves

First result (kind of silly)
Corollary
Let X be compact, and for each k ∈ N, let fk : X → Y be an
embedding. Suppose that the fk converge uniformly to some f . Then
if f is injective, it’s also an embedding.

Example:

Figure: f5
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First result (kind of silly)
Corollary
Let X be compact, and for each k ∈ N, let fk : X → Y be an
embedding. Suppose that the fk converge uniformly to some f . Then
if f is injective, it’s also an embedding.

Example:

Figure: f6
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Iterative version
Theorem
Let Y be a metric space. For all k ∈ N, let hk : Y → Y be a
homeomorphism and for all n ∈ N, define

hn =
n

k=1
hk = (hn ◦ hn−1 ◦ · · · ◦ h2 ◦ h1).

For each k let Vk ⊆ Y such that hk is identity on V c
k . Then provided

(cont. next slide)
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Iterative version
Theorem (cont.)

1. The Vk satisfy

lim
n→∞

( ∞⋃
k=n

Vk

)
= 0,

2. There exists a compact A ⊆ Y such that( ∞⋃
k=1

Vk

)
⊆ A◦

3. h∞ defined by h∞ = limn→∞ hn exists and is bijective, then
h∞ is a homeomorphism.
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Idea of proof
▶ Just need to verify uniform convergence.
▶ The shrinking conditions on the Vk guarantee all but one point

“stops moving” past some index n0

hn0
(y) h

1

h
2

h
4

y

V1

V2

V3

V4V5

V6

A

Forest Kobayashi
On Performing Countably-Many Reidemeister Moves



Preamble Intro Motivation Countable Reid. Moves

Example 1

V1

V2
V3

V4 V5
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Example 1
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Example 2
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Example 3 (hard!)
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Example 4
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Example 4
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Non-example: Vk don’t decay properly

Forest Kobayashi
On Performing Countably-Many Reidemeister Moves



Preamble Intro Motivation Countable Reid. Moves

Non-example: Bijectivity lost (subtle!!)
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Non-example: Bijectivity lost (subtle!!)
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Towards a Countable Reidemeister Theorem
Definition (Discrete Diagram)
A discrete diagram for a knot f : S1 ↪→ R3 has

1. Topologically discrete crossing-points,
2. Only two strands intersecting at any given crossing,
3. Only “transverse” crossings.

Theorem (Countable polygonal knot)
Let f : S1 ↪→ R3 have a discrete diagram. Then f is equivalent to a
knot comprised of a countable union of straight line segments.

Proof: Unpleasant!
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Conjecture!
Define the extended Reidemeister moves to be the original set together with a
fourth move

A A

where in the above, A is a compact set whose interior remains fixed relative to its
boundary.

Let f0, f1 : S1 ↪→ R3 admit discrete diagrams D0, D1. Then f1 ∼= f2 iff there
exists a countable sequence of Reidemeister moves satisfying (slightly-modified
versions of) the decay conditions on the Vk that take D0 to D1.
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