A Motivating Problem	Defining the Problem	Proof Sketch	Some examples	Bibliography
000000	00	00000	00000	0

The Euler-Lagrange Equation

Forest Kobayashi

Harvey Mudd College

April 1st, 2019

Harvey Mudd College

A Motivating Problem	Defining the Problem	Proof Sketch	Some examples	Bibliography
•00000	00	00000	00000	0

Airlines

Figure 1: Mudd Air (adapted from [Air19])

Forest Kobayashi The Euler-Lagrange Equation

A Motivating Problem	Defining the Problem	Proof Sketch	Some examples	Bibliography
00000	00	00000	00000	0

Airline

А	Motivating	Problem
00	0000	

Defining the Problem 00

Proof Sketch 00000 Some exan 00000 Bibliography O

Airline, cont.

Figure 3: Flight 2 (FDX50252), Friday 03/22/2019

Forest Kobayashi The Euler-Lagrange Equation

A Motivating Problem	Defining the Problem	Proof Sketch	Some examples	Bibliography
000000	00	00000	00000	0

The difference:

Figure 4: Wind patterns at 70hPa during Flight 1

Forest Kobayashi The Euler-Lagrange Equation

A Motivating Problem	Defining the Problem	Proof Sketch	Some examples	Bibliography
000000	00	00000	00000	0

The difference:

Figure 5: Wind patterns at 70hPa during Flight 2

Forest Kobayashi The Euler-Lagrange Equation

A Motivating Problem	Defining the Problem	Proof Sketch	Some examples	Bibliography
00000	00	00000	00000	0

How do airlines calculate the best trajectory?

Forest Kobayashi The Euler-Lagrange Equation

A Motivating Problem	Defining the Problem	Proof Sketch	Some examples	Bibliography
000000	•0	00000	00000	O

Key Features:

- ▶ Object of interest: a path q(t) = (x(t), y(t), z(t)).
- ► Givens:
 - Start/end points $\mathbf{x}_0, \mathbf{x}_1$ (Honolulu/Anchorage)
 - A region $X \subset \mathbb{R}^3$ we can fly through (Pacific Ocean airspace)
 - \blacksquare Drag: $\mathbf{F}_D(t,\,\boldsymbol{q}(t),\,\boldsymbol{\dot{q}}(t))$
- Goal: find q(t) minimizing *total* travel time.

A Motivating Problem 000000	Defining the Problem O●	Proof Sketch 00000	Some examples 00000	Bibliography O

Defining "Cost"

- ▶ Again: drag is given by $\mathbf{F}_D(t, \boldsymbol{q}(t), \dot{\boldsymbol{q}}(t))$
- ▶ Define "instantaneous cost" function:

 $\mathcal{L}(t,\,\boldsymbol{q}(t),\,\boldsymbol{\dot{q}}(t))$

▶ Then define the total "cost" of trip:

$$C[\boldsymbol{q}] = \int_{t_0}^{t_1} \mathcal{L}(t, \, \boldsymbol{q}(t), \, \dot{\boldsymbol{q}}(t)) \, \mathrm{d}t$$

 What we want: a way to find "critical paths," kind of like "critical points" from Calculus.

A Motivating Problem	Defining the Problem	Proof Sketch	Some examples	Bibliography
000000	00	00000	00000	0

Suppose an optimal q(t) exists:

Forest Kobayashi The Euler-Lagrange Equation

A Motivating Problem	Defining the Problem	Proof Sketch	Some examples	Bibliography
000000	00	00000	00000	0

For some $\boldsymbol{\eta}(t)$, add $\alpha \cdot \boldsymbol{\eta}(t)$:

Forest Kobayashi The Euler-Lagrange Equation

A Motivating Problem 000000

Defining the Problem 00 Proof Sketch

Some example 00000 Bibliography O

For smaller α , q'(t) closer to optimal:

Figure 8: q'(t) for various values of α

Forest Kobayashi The Euler-Lagrange Equation

A Motivating Problem	Defining the Problem	Proof Sketch	Some examples	Bibliography
000000	00	00000	00000	0

Turn C into optimizing a 1-D function:

• Consider $C[\mathbf{q'}(t)]$ as a function of just $\boldsymbol{\alpha}$:

$$C'(\boldsymbol{\alpha}) = C[\boldsymbol{q}(t) + \boldsymbol{\alpha} \cdot \boldsymbol{\eta}(t)].$$

This is just a map from $\mathbb{R} \to \mathbb{R}!$

• Note that
$$C'(\mathbf{0}) = C[\mathbf{q}(t)]$$
, so

$$0 = \frac{\mathrm{d}C'(\alpha)}{\mathrm{d}\alpha}\bigg|_{\alpha=0}$$

 Repeated application of the chain rule and integration by parts yields

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{q}} - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \boldsymbol{\dot{q}}} \right) = 0$$

A Motivating Problem	Defining the Problem	Proof Sketch	Some examples	Bibliography
000000	00	00000	00000	0

Solution: Euler-Lagrange

Theorem (Euler-Lagrange)

Let X be our space of interest, and let \mathbf{x}_0 , $\mathbf{x}_1 \in X$. Let q(t) be a path from \mathbf{x}_0 to \mathbf{x}_1 . Then if q(t) minimizes the "total cost function"

$$C[\boldsymbol{q}(t)] = \int_{t_0}^{t_1} \mathcal{L}(t, \boldsymbol{q}(t), \dot{\boldsymbol{q}}(t)) \, \mathrm{d}t,$$

 $oldsymbol{q}(t)$ is a solution to the differential equation

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{q}} - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}} \right) = 0.$$

A Motivating Problem	Defining the Problem	Proof Sketch	Some examples	Bibliography
000000	00	00000	0000	0

Big idea: find best path

Figure 9: Drag field

Forest Kobayashi The Euler-Lagrange Equation

A Motivating Problem	Defining the Problem	Proof Sketch	Some examples	Bibliography
000000	00	00000	0000	0

Big idea, cont:

Forest Kobayashi The Euler-Lagrange Equation

A Motivating Problem	Defining the Problem	Proof Sketch	Some examples	Bibliography
000000	00	00000	00000	0

Big idea, cont:

Forest Kobayashi The Euler-Lagrange Equation

A Motivating Problem	Defining the Problem	Proof Sketch	Some examples	Bibliography
000000	00	00000	00000	O

Other Examples

- ▶ Optimal control
- ▶ Geodeseics & Minimal surfaces of revolution
- ▶ Lagrangian Mechanics: $\mathcal{L} = T V$
- ▶ Brachistochrone problem

Forest Kobayashi The Euler-Lagrange Equation

A Motivating Problem	Defining the Problem	Proof Sketch	Some examples	Bibliography
000000	00	00000	00000	0

Brachistochrone

Forest Kobayashi The Euler-Lagrange Equation

A Motivating Problem	Defining the Problem	Proof Sketch	Some examples	Bibliography
000000	00	00000	00000	•

References

Airplane Movie Poster 24"x36", Mar 2019.

[Online; accessed 31. Mar. 2019].

Forest Kobayashi The Euler-Lagrange Equation