
Background & Motivation Biquandles & Brackets Kaestner Brackets Results Acknowledgements

Kaestner Brackets
UnKnot IV

Forest Kobayashi
Advisor: Sam Nelson

Harvey Mudd College

July 21st, 2019

Forest Kobayashi Advisor: Sam Nelson Harvey Mudd College

Kaestner Brackets



Background & Motivation Biquandles & Brackets Kaestner Brackets Results Acknowledgements

Kaestner Brackets
UnKnot IV

Forest Kobayashi
Advisor: Sam Nelson

Harvey Mudd College

July 21st, 2019

Forest Kobayashi Advisor: Sam Nelson Harvey Mudd College

Kaestner Brackets



Background & Motivation Biquandles & Brackets Kaestner Brackets Results Acknowledgements

Agenda

◮ Full construction of Kaestner brackets is a bit involved, so we’ll
focus mostly on big-picture stuff for today:

1. Basic definitions

2. Why we should care about invariants

3. Coloring invariants, skein(ish) relations, and how to combine them

4. Distinguishing virtual knots: Kaestner Brackets

5. Results, future directions
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Definitions

Recall:

Definition

A knot is an embedding K : S1 →֒ R
3.
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Definitions

Recall:

Definition

A knot is an embedding K : S1 →֒ R
3.

K(7,2)

Figure 1: The (7, 2) knot.
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Definitions

Knots can be oriented

Definition

An oriented knot is a knot K that has been endowed with a choice of
orientation.
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Definitions

Knots can be oriented

Definition

An oriented knot is a knot K that has been endowed with a choice of
orientation.

K(7,2)

Figure 2: Oriented (7, 2)
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Definitions

Knot diagrams

◮ Breaks represent crossings

u
n
d
erov

er

◮ We call the top strand the “overstrand” and the bottom strand the
“understrand.”
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Definitions

A bit more on crossings

◮ Unoriented case: all crossings look alike!
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Definitions

A bit more on crossings

◮ Oriented case: two classes of crossings

+
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Definitions

A bit more on crossings

◮ Oriented case: two classes of crossings

−
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Definitions

A bit more on crossings

◮ Oriented case: two classes of crossings

+

−
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Definitions

Knots reflect topological properties of ambient space

◮ Ex: in R
4, all knots are unknotted!
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Definitions

Knots reflect topological properties of ambient space

◮ Ex: in R
4, all knots are unknotted!

(Sketch of proof).

Let K : S1 →֒ R4 be an embedding. At every crossing in K, we can
exchange over/understrands by tucking one into the extra dimension and
repositioning the other.

Original state Tuck & reposition Untuck & smooth

By a previous result, this implies K is unknotted. �
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Definitions

Knots reflect topological properties of ambient space

◮ Ex: virtual knots
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Definitions

Knots reflect topological properties of ambient space

◮ Ex: virtual knots

πR2
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Definitions

Knots reflect topological properties of ambient space

◮ Ex: virtual knots

πR2

◮ This “crossing” in our diagram is not really there!
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Definitions

Knots reflect topological properties of ambient space

◮ Ex: virtual knots

1

1

We assign crossings in virtual knots a “parity” based on how many
classical crossings we encounter travelling from understrand to
overstrand
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Definitions

“Knot equality” needs to take this into account

Definition (Ambient Isotopy)

Let K0, K1 be knots. Then we say K0
∼= K1 if there is a continuous

map F : R3 × [0, 1] → R
3 such that F0 is identity, K0

F1
7−→ K1, and

each Ft is a homeomorphism.

◮ Intuitively: we can deform K0 into K1 without tearing / gluing
K0 or the space it lives in.

◮ Various other perspectives

Oriented homeomorphism

Homotopy “through” knots
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Definitions

Determining equivalence

◮ How do we tell if K0
∼= K1?

Surprisingly hard!
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Definitions

Determining equivalence

◮ How do we tell if K0
∼= K1?

Surprisingly hard!

?
∼=

K(7,2)K(7,6)

Q: Are these ambient isotopic?
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Definitions

Determining equivalence

◮ How do we tell if K0
∼= K1?

Surprisingly hard!

?
∼=6∼=

K(7,2)K(7,6)

A: Nope.
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Definitions

Determining equivalence

◮ How do we tell if K0
∼= K1?

Surprisingly hard!

?
∼=

K(16,32686)K(16,32686)

Q: What about these?
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Definitions

Determining equivalence

◮ How do we tell if K0
∼= K1?

Surprisingly hard!

?
∼=∼=

K(16,32686)K(16,32686)

A: Yes!
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Definitions

Showing equivalence: Reidemeister moves

Theorem
K0

∼= K1 iff we can turn K0 into K1 via a finite sequence of the following:

I

∼

II

∼

III

∼
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Definitions

Showing equivalence: Reidemeister moves

Theorem
K0

∼= K1 iff we can turn K0 into K1 via a finite sequence of the following:

I

∼

II

∼

III

∼

◮ Can prove K0
∼= K1 by exhibiting such a sequence

Forest Kobayashi Harvey Mudd College

Kaestner Brackets



Background & Motivation Biquandles & Brackets Kaestner Brackets Results Acknowledgements

Definitions

Showing K0 6∼= K1 is hard

◮ Existing algorithms

Highly technical

Very inefficient

• Those that have proven complexities involve things like
“O(k ↑↑ n) where n is large”

• Even NP seems out-of-reach for the time being

• See [3] for more

◮ What now?
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Motivation

Work smarter, not harder

Analogy: in 10 seconds or less. . . which of the following are true?
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Motivation

Work smarter, not harder

Analogy: in 10 seconds or less. . . which of the following are true?

1 5
(

33 · 11
)2

= 2(72 + 33 − 8)

2 − 2
(√

47 + 1

47

)3
= 47 − 1

472

3 3x4 + (x + 3)(x2 + 2x + 2) +
2

3
(x − x2) = 2

(

x4 +
3

2
x(x2 − 3x)

)

+ 3x

4 There exists no s ∈ C such that
∑

∞

n=1

1

ns = 0, Re(s) 6= 1

2
and s is not a

negative even integer.
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Motivation

Work smarter, not harder

“Clever” solutions:

1 5
(

33 · 11
)2

= 2(72 + 33 − 8) LHS is odd, RHS is even

2 − 2
(√

47 + 1

47

)3
= 47 − 1

472

3 3x4 + (x + 3)(x2 + 2x + 2) +
2

3
(x − x2) = 2

(

x4 +
3

2
x(x2 − 3x)

)

+ 3x

4 There exists no s ∈ C such that
∑

∞

n=1

1

ns = 0, Re(s) 6= 1

2
and s is not a

negative even integer.
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Motivation

Work smarter, not harder

“Clever” solutions:

1 5
(

33 · 11
)2

= 2(72 + 33 − 8) LHS is odd, RHS is even

2 − 2
(√

47 + 1

47

)3
= 47 − 1

472
LHS is negative, RHS is positive

3 3x4 + (x + 3)(x2 + 2x + 2) +
2

3
(x − x2) = 2

(

x4 +
3

2
x(x2 − 3x)

)

+ 3x

4 There exists no s ∈ C such that
∑

∞

n=1

1

ns = 0, Re(s) 6= 1

2
and s is not a

negative even integer.
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Motivation

Work smarter, not harder

“Clever” solutions:

1 5
(

33 · 11
)2

= 2(72 + 33 − 8) LHS is odd, RHS is even

2 − 2
(√

47 + 1

47

)3
= 47 − 1

472
LHS is negative, RHS is positive

3 3x4 + (x + 3)(x2 + 2x + 2) +
2

3
(x − x2) = 2

(

x4 +
3

2
x(x2 − 3x)

)

+ 3x

The leading coefficients don’t match

4 There exists no s ∈ C such that
∑

∞

n=1

1

ns = 0, Re(s) 6= 1

2
and s is not a

negative even integer.

Forest Kobayashi Harvey Mudd College

Kaestner Brackets



Background & Motivation Biquandles & Brackets Kaestner Brackets Results Acknowledgements

Motivation

Work smarter, not harder

“Clever” solutions:

1 5
(

33 · 11
)2

= 2(72 + 33 − 8) LHS is odd, RHS is even

2 − 2
(√

47 + 1

47

)3
= 47 − 1

472
LHS is negative, RHS is positive

3 3x4 + (x + 3)(x2 + 2x + 2) +
2

3
(x − x2) = 2

(

x4 +
3

2
x(x2 − 3x)

)

+ 3x

The leading coefficients don’t match

4 There exists no s ∈ C such that
∑

∞

n=1

1

ns = 0, Re(s) 6= 1

2
and s is not a

negative even integer. “The proof is left as an exercise to the reader”
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Motivation

Work smarter, not harder

1 5
(

33 · 11
)2

= 2(72 + 33 − 8) LHS is odd, RHS is even

2 − 2
(√

47 + 1

47

)3
= 47 − 1

472
LHS is negative, RHS is positive

3 3x4 + (x + 3)(x2 + 2x + 2) +
2

3
(x − x2) = 2

(

x4 +
3

2
x(x2 − 3x)

)

+ 3x

The leading coefficients don’t match

4 There exists no s ∈ C such that
∑

∞

n=1

1

ns = 0, Re(s) 6= 1

2
and s is not a

negative even integer. “The proof is left as an exercise to the reader”

Takeaway: sometimes we don’t need to fully solve “hard” problems if we
can find an easier implied problem (or, if we just quit)
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Motivation

Introducing: knot invariants

Definition (Knot invariant)

A knot invariant is a systematic ways of assigning “nice” values to knots such that
equivalent knots get mapped to the same thing — i.e., a map ϕ such that
K0

∼= K1 =⇒ ϕ(K0) = ϕ(K1).

◮ Remainder mod n, sign, and leading coefficent are “invariants” in the
arithmetic expressions above

Indispensable when “simplifying expressions” is hard
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Motivation

Introducing: knot invariants

Definition (Knot invariant)

A knot invariant is a systematic ways of assigning “nice” values to knots such that
equivalent knots get mapped to the same thing — i.e., a map ϕ such that
K0

∼= K1 =⇒ ϕ(K0) = ϕ(K1).

◮ Remainder mod n, sign, and leading coefficent are “invariants” in the
arithmetic expressions above

Indispensable when “simplifying expressions” is hard

◮ Game plan for constructing knot invariants:

1. Define algebraic structure on knots

2. Cleverly embed in something we understand better (Z, R[x], etc.)

3. Pull back results to give us information about knots
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Coloring

Coloring invariants

◮ A natural way to encode knots algebraically. Procedure:

1. Pick a labelling set X (here, colors)

2. Assign a label from X to each semiarc of the diagram (semiarc =
portion of strand between over / under crossings)

3. Ensure Reidemeister moves only make invertible changes to the
labelling

4. If so, this labeling scheme is an invariant of the knot
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Coloring

Turning it into Algebra

◮ Introduce two operations: ⊲, ⊲ (“under” and “over”) as follows:

x

x ⊲ y

y ⊲ x

y

Note that we label our crossings left to right, not top to bottom
— this makes axioms cleaner.

◮ Abstractly: ⊲ , ⊲ encode crossing information by how it constrains the
coloring
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Coloring

Guaranteeing invariance

◮ Let X be our set of labels. To guarantee invariance under the
Reidemeister moves, we need the following:

1. ∀x ∈ X, x ⊲ x = x ⊲ x

2. ∀x, y ∈ X, the following maps are invertible: αx(y) = y ⊲ x,
βx(y) = y ⊲ x, and S(x, y) = (y ⊲ x, x ⊲ y)

3. ∀x, y, z ∈ X, we have the following exchange laws:

(x ⊲ y) ⊲(z ⊲ y) = (x ⊲ z) ⊲(y ⊲ z)

(x ⊲ y) ⊲(z ⊲ y) = (x ⊲ z) ⊲(y ⊲ z)

(x ⊲ y) ⊲(z ⊲ y) = (x ⊲ z) ⊲(y ⊲ z)

◮ Such a labelling scheme is called a biquandle.
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Coloring

Connection to Reidemeister moves

◮ Axiom 1 is required by Reidemeister I, Axiom 2 by Reidemeister
II, and Axiom 3 by Reidemeister III

◮ Reidemeister I:

x

x

x

x

x ⊲ x

x ⊲ x

I
∼

◮ Similarly for Reidemeister 2, Reidemeister 3
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Skein(ish) relations

Recall: skein(ish) relations

Ex: Jones Polynomial.

Let [ ] satisfy

[ ]

=

[ ]

− q

[ ]

[

· · ·
]

=
(

q + q−1
)n−1

Then define the Jones Polynomial by

J(L) = (−1)nqp−2n〈L〉

where n is the number of negative crossings, and p is the number of positive
crossings. ([1], [4]) �
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Skein(ish) relations

Pros & Cons

◮ Pros:

Gives us polynomials, which are often easier to work with than
birack-flavored invariants

Can use Reidemeister moves on intermediate smoothing states

◮ Cons:

Geometric interpretation can be challenging

Requires recursive enumeration of smoothed states, which is
O(2n)
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Skein(ish) relations

Pros & Cons

◮ Pros:

Gives us polynomials, which are often easier to work with than
birack-flavored invariants

Can use Reidemeister moves on intermediate smoothing states

◮ Cons:

Geometric interpretation can be challenging

Requires recursive enumeration of smoothed states, which is
O(2n)

(k)not quandle-y enough
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Skein(ish) relations

Coloring-dependent skein(ish) coefficients

Definition (Biquandle Brackets)

Let X be a biquandle, and R a commutative ring with identity. Let
w ∈ R×, δ ∈ R, and A, B : X × X → R× such that

1. ∀x ∈ X,
A

2

x,xB
−1

x,x = w

2. ∀x, y ∈ X,
−A

−1

x,yBx,y − Ax,yB
−1

x,y = δ

3. (cont. on next slide)

N.B. — for the sake of space, we write Ax,y (or sometimes Ax
y

) in place of A(x, y).
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Skein(ish) relations

Coloring-dependent skein(ish) coefficients

Definition

3. ∀x, y, z ∈ X,

Ax
y

· Ax ⊲ y

z ⊲ y

· Ay
z

= Ay ⊲ x

z ⊲ x

· Ax
z

· Ax ⊲ z
y ⊲ z

Ax
y

· Bx ⊲ y

z ⊲ y

· By
z

= By ⊲ x

z ⊲ x

· Bx
z

· Ax ⊲ z
y ⊲ z

Bx
y

· Bx ⊲ y

z ⊲ y

· Ay
z

= Ay ⊲ x

z ⊲ x

· Bx
z

· Bx ⊲ z
y ⊲ z

(cont. on next slide)
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Skein(ish) relations

Coloring-dependent skein(ish) coefficients

Definition

3. (cont.)

Ax
y

· Bx ⊲ y

z ⊲ y

· Ay
z

= Ay ⊲ x

z ⊲ x

· Ax
z

· Bx ⊲ z
y ⊲ z

+ By ⊲ x

z ⊲ x

· Ax
z

· Ax ⊲ z
y ⊲ z

+ δBy ⊲ x

z ⊲ x

· Ax
z

· Bx ⊲ z
y ⊲ z

+ By ⊲ x

z ⊲ x

· Bx
z

· Bx ⊲ z
y ⊲ z

Ay ⊲ x

z ⊲ x

· Bx
z

· Ax ⊲ z
y ⊲ z

= Ax
y

· Ax ⊲ y

z ⊲ y

· By
z

+ Bx
y

· Ax ⊲ y

z ⊲ y

· Ay
z

+ δBx
y

· Ax ⊲ y

z ⊲ y

· By
z

+ Bx
y

· Bx ⊲ y

z ⊲ y

· By
z
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Skein(ish) relations

Cool facts about biquandle brackets

◮ Interpretation of axioms:

wn−p = writhe correction factor

δ adjusts for when we introduce new components

Axiom 3 reflects the smoothings of Reidemeister III

◮ Well-known special cases

Many biquandle invariants

Jones, HOMFLYPT polynomials

◮ Intuitive summary: biquandle brackets move structure off of
strand labels and into coefficients
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Skein(ish) relations

Encorporating parity

◮ Recall: in virtual knots, we can assign parity to crossings

1

1

0

0

0

◮ How do we distinguish these?
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Parity Biquandles

◮ Idea: make ⊲, ⊲ functions depend on parity of crossing

◮ How do we adapt our biquandle definition?

Crossings in Reidemeister I moves are always even, so no
constraints there

Reidemeister II still forces invertibility

Reidemeister III?
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Parity Biquandles

◮ Idea: make ⊲, ⊲ functions depend on parity of crossing

◮ How do we adapt our biquandle definition?

Crossings in Reidemeister I moves are always even, so no
constraints there

Reidemeister II still forces invertibility

Reidemeister III?

Lemma (Nelson et. al, [2])
Let K be a virtual knot. Then for any Reidemeister III move,
either

1. All of the crossings are even, or

2. Two are odd and one is even

Hence. . .
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Parity Biquandles

Parity Biquandles

Definition (Nelson et. al)

Let X be a set of labels together with four binary operations: ⊲0, ⊲0, ⊲1, ⊲1 such
that

1. X together with ⊲0, ⊲0 is a biquandle (X with ⊲1, ⊲1 need not be)

2. Biquandle axiom 2 applies to ⊲1, ⊲1

3. For all (a, b, c) ∈ {(1, 1, 0), (1, 0, 1), (0, 1, 1)} and for all x, y, z ∈ X, we have

(z ⊲ay)⊲b(x⊲cy) = (z ⊲bx)⊲a(y ⊲cx)

(x⊲ay)⊲b(z ⊲cy) = (x⊲bz)⊲a(y ⊲cz)

(y ⊲ax)⊲b(z ⊲cx) = (y ⊲bz)⊲a(x⊲cz)
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Parity Biquandles

and finally. . . Kaestner Brackets!

Definition
Let (X, ⊲0, ⊲0, ⊲1, ⊲1) be a parity biquandle, and let R be a commutative ring
with identity. Let δ ∈ R and A0, B0, A1, B1 : X × X → R×. Then we call
((X), A0, B0, A1, B1) a Kaestner bracket iff the following hold:

1. ((X, ⊲0, ⊲0), A0, B0) is a biquandle bracket,

2. A1, B1 are invertible,

3. For all x, y ∈ X,

δ = −A1,x,y · B−1

1,x,y
− A−1

1,x,y
· B1,x,y

(cont. on next slide)
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Parity Biquandles

and finally. . . Kaestner Brackets!

Definition
3. (cont.) For all (a, b, c) ∈ {(1, 1, 0), (1, 0, 1), (0, 1, 1)}, we have the following:

(i)
︷ ︸︸ ︷
Aa,x

y

· Ab,x ⊲ ay

z ⊲ cy

· Ac,y
z

=

(I)
︷ ︸︸ ︷
Ac,y ⊲ ax

z ⊲ bx

· Ab,x
z

· A
a,x ⊲ bz

y ⊲ cz

(iv)
︷ ︸︸ ︷
Aa,x

y

· Bb,x ⊲ ay

z ⊲ cy

· Bc,y
z

=

(VII)
︷ ︸︸ ︷
Bc,y ⊲ ax

z ⊲ bx

· Bb,x
z

· A
a,x ⊲ bz

y ⊲ cz

(vii)
︷ ︸︸ ︷
Ba,x

y

· Bb,x ⊲ ay

z ⊲ cy

· Ac,y
z

=

(IV)
︷ ︸︸ ︷
Ac,y ⊲ ax

z ⊲ bx

· Bb,x
z

· B
a,x ⊲ bz

y ⊲ cz
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Parity Biquandles

and finally. . . Kaestner Brackets!

Definition
(iii)

︷ ︸︸ ︷
Aa,x

y

· B
b,x ⊲ ay

z ⊲ cy

· Ac,y
z

=

(II)
︷ ︸︸ ︷
A

c,y ⊲ ax

z ⊲ bx

· Ab,x
z

· B
a,x ⊲ bz

y ⊲ cz

+

(V)
︷ ︸︸ ︷
B

c,y ⊲ ax

z ⊲ bx

· Ab,x
z

· A
a,x ⊲ bz

y ⊲ cz

+ δB
c,y ⊲ ax

z ⊲ bx

· Ab,x
z

· B
a,x ⊲ bz

y ⊲ cz
︸ ︷︷ ︸

(VI)

+ B
c,y ⊲ ax

z ⊲ bx

· Bb,x
z

· B
a,x ⊲ bz

y ⊲ cz
︸ ︷︷ ︸

(VIII)

(III)
︷ ︸︸ ︷
A

c,y ⊲ ax

z ⊲ bx

· Bb,x
z

· A
a,x ⊲ bz

y ⊲ cz

=

(ii)
︷ ︸︸ ︷
Aa,x

y

· A
b,x ⊲ ay

z ⊲ cy

· Bc,y
z

+

(v)
︷ ︸︸ ︷
Ba,x

y

· A
b,x ⊲ ay

z ⊲ cy

· Ac,y
z

+ δBa,x
y

· A
b,x ⊲ ay

z ⊲ cy

· Bc,y
z

︸ ︷︷ ︸
(vi)

+ Ba,x
y

· B
b,x ⊲ ay

z ⊲ cy

· Bc,y
z

︸ ︷︷ ︸
(vii)
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Parity Biquandles

Corresponding smoothings

Figure 4: LHS Smoothings
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Parity Biquandles

Corresponding smoothings

Figure 4: RHS Smoothings
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Results

◮ The choice we had:

(a) Pursue further results theoretically

(b) Pursue further results computationally
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Results

◮ The choice we had:

(a) Pursue further results theoretically

(b) Pursue further results computationally

◮ Decision: both, but start with (b) first

Forest Kobayashi Harvey Mudd College

Kaestner Brackets



Background & Motivation Biquandles & Brackets Kaestner Brackets Results Acknowledgements

Computational results

◮ Huge algorithmic improvements to search code for biquandles, parity
biquandles, and biquandle brackets

◮ Performance comparison (new code vs. old code):

On first non-instant return: ≈ 1 sec vs. ≈ 301 sec

On a previously unfeasible computation: ≈ 46 sec vs. >50 day
runtime (this is lower bound is very conservative)

◮ Plus, first examples of Kaestner brackets!

◮ Possible reduction to graph alg
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Future work

◮ Implement the graph-based search algorithm

◮ Categorification of knots (inspired by δ)

Current idea: we have lots of known unknotting moves — why
not use them as knotting moves instead?

The UnKnot becomes the “identity” (!)

◮ A new knot presentation!
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A new grid presentation!
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