Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000 00000	0000	0000	00

Kaestner Brackets UnKnot IV

Forest Kobayashi Advisor: Sam Nelson

Harvey Mudd College

July $21^{\rm st},\,2019$

Forest Kobayashi Advisor: Sam Nelson Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000 00000	0000	0000	00

Kaestner Brackets

Forest Kobayashi Advisor: Sam Nelson

Harvey Mudd College

July $21^{\rm st},\,2019$

Forest Kobayashi Advisor: Sam Nelson Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000 00000	0000	0000	00

Agenda

- ► Full construction of Kaestner brackets is a bit involved, so we'll focus mostly on big-picture stuff for today:
 - 1. Basic definitions
 - 2. Why we should care about invariants
 - 3. Coloring invariants, skein(ish) relations, and how to combine them
 - 4. Distinguishing virtual knots: Kaestner Brackets
 - 5. Results, future directions

●00000000 0000 0000 0000 0000 0000 000	Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
Definitions	0000000 000	0000	0000	0000	00
	Definitions				

Recall:

Definition

A knot is an embedding $K: S^1 \hookrightarrow \mathbb{R}^3$.

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000 00000	0000	0000	00
Definitions				

Recall:

Definition

A knot is an embedding $K: S^1 \hookrightarrow \mathbb{R}^3$.

Figure 1: The (7, 2) knot.

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000	0000	0000	00
Definitions				

Knots can be oriented

Definition

An *oriented knot* is a knot K that has been endowed with a choice of orientation.

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
0 0000000 00	0000	0000	0000	00
Definitions				

Knots can be oriented

Definition

An *oriented knot* is a knot K that has been endowed with a choice of orientation.

Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
0000000 00	0000 00000	0000	0000	00
Definitions				

Knot diagrams

Breaks represent crossings

▶ We call the top strand the "overstrand" and the bottom strand the "understrand."

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000 00000	0000	0000	00
Definitions				

▶ Unoriented case: all crossings look alike!

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000 00000	0000	0000	00
Definitions				

▶ Oriented case: two classes of crossings

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000 00000	0000	0000	00
Definitions				

▶ Oriented case: two classes of crossings

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000 00000	0000	0000	00
Definitions				

▶ Oriented case: two classes of crossings

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000	0000	0000	00
Definitions				

• Ex: in \mathbb{R}^4 , all knots are unknotted!

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000	0000	0000	00
Definitions				

• Ex: in \mathbb{R}^4 , all knots are unknotted!

(Sketch of proof).

Let $K: S^1 \hookrightarrow \mathbb{R}^4$ be an embedding. At every crossing in K, we can exchange over/understrands by tucking one into the extra dimension and repositioning the other.

Forest Kobayashi Kaestner Brackets

Background	&	Motivation
000000000		
00		
Definitions		

Biquandles & Brackets 0000 00000 Kaestner Brackets 0000 Results 0000 Acknowledgements 00

Knots reflect topological properties of ambient space

► Ex: virtual knots

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000 00000	0000	0000	00
Definitions				

► Ex: virtual knots

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000	0000	0000	00
D. C. MI				

► Ex: virtual knots

▶ This "crossing" in our diagram is not really there!

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000	0000	0000	00
Defections				

► Ex: virtual knots

We assign crossings in virtual knots a "parity" based on how many classical crossings we encounter travelling from understrand to overstrand

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
000000000 00	0000	0000	0000	00
Definitions				

"Knot equality" needs to take this into account

Definition (Ambient Isotopy)

Let K_0, K_1 be knots. Then we say $K_0 \cong K_1$ if there is a continuous map $F : \mathbb{R}^3 \times [0, 1] \to \mathbb{R}^3$ such that F_0 is identity, $K_0 \xrightarrow{F_1} K_1$, and each F_t is a homeomorphism.

- Intuitively: we can deform K_0 into K_1 without tearing / gluing K_0 or the space it lives in.
- ▶ Various other perspectives
 - Oriented homeomorphism
 - Homotopy "through" knots

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
000000000 00	0000 00000	0000	0000	00
Definitions				

- How do we tell if $K_0 \cong K_1$?
 - Surprisingly hard!

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
000000000 00	0000 00000	0000	0000	00
Definitions				

- How do we tell if $K_0 \cong K_1$?
 - Surprisingly hard!

Q: Are these ambient isotopic?

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
000000000 00	0000 00000	0000	0000	00
Definitions				

- How do we tell if $K_0 \cong K_1$?
 - Surprisingly hard!

A: Nope.

 $K_{(7,6)}$

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
000000000 00	0000 00000	0000	0000	00
Definitions				

- How do we tell if $K_0 \cong K_1$?
 - Surprisingly hard!

Q: What about these?

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
000000000 00	0000 00000	0000	0000	00
Definitions				

- How do we tell if $K_0 \cong K_1$?
 - Surprisingly hard!

 $K_{(16,32686)}$

A: Yes!

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
000000000 00	0000 00000	0000	0000	00
Definitions				

Showing equivalence: Reidemeister moves

Theorem

 $K_0 \cong K_1$ iff we can turn K_0 into K_1 via a finite sequence of the following:

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000 00000	0000	0000	00
Definitions				

Showing equivalence: Reidemeister moves

Theorem

 $K_0 \cong K_1$ iff we can turn K_0 into K_1 via a finite sequence of the following:

• Can prove $K_0 \cong K_1$ by exhibiting such a sequence

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000 00000	0000	0000	00
Definitions				

Showing $K_0 \not\cong K_1$ is hard

- Existing algorithms
 - Highly technical
 - Very inefficient
 - Those that have proven complexities involve things like " $O(k \uparrow \uparrow n)$ where n is large"
 - Even NP seems out-of-reach for the time being
 - See [3] for more

► What now?

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 •0	0000 00000	0000	0000	00
Motivation				

Analogy: in 10 seconds or less... which of the following are true?

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 •0	0000 00000	0000	0000	00
Motivation				

Analogy: in 10 seconds or less... which of the following are true?

(1)
$$5(3^3 \cdot 11)^2 = 2(72 + 33 - 8)$$

(2) $-\frac{2}{\left(\sqrt{47} + \frac{1}{47}\right)^3} = 47 - \frac{1}{47^2}$
(3) $3x^4 + (x+3)(x^2 + 2x + 2) + \frac{2}{3}(x-x^2) = 2\left(x^4 + \frac{3}{2}x(x^2 - 3x)\right) + 3x$
(4) There exists no $s \in \mathbb{C}$ such that $\sum_{n=1}^{\infty} \frac{1}{n^s} = 0$, $\operatorname{Re}(s) \neq \frac{1}{2}$ and s is not a negative even integer.

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 •0	0000 00000	0000	0000	00
Motivation				

"Clever" solutions:

(1)
$$5(3^3 \cdot 11)^2 = 2(72 + 33 - 8)$$
 LHS is odd, RHS is even
(2) $-\frac{2}{\left(\sqrt{47} + \frac{1}{47}\right)^3} = 47 - \frac{1}{47^2}$
(3) $3x^4 + (x+3)(x^2 + 2x + 2) + \frac{2}{3}(x-x^2) = 2\left(x^4 + \frac{3}{2}x(x^2 - 3x)\right) + 3x$
(4) There exists no $s \in \mathbb{C}$ such that $\sum_{n=1}^{\infty} \frac{1}{n^s} = 0$, $\operatorname{Re}(s) \neq \frac{1}{2}$ and s is not a negative even integer.

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 •0	0000 00000	0000	0000	00
Motivation				

"Clever" solutions:

$$\begin{array}{ll} \left(1\right) & 5\left(3^3 \cdot 11\right)^2 = 2(72+33-8) \quad \text{LHS is odd, RHS is even} \\ \left(2\right) & -\frac{2}{\left(\sqrt{47}+\frac{1}{47}\right)^3} = 47 - \frac{1}{47^2} \quad \text{LHS is negative, RHS is positive} \\ \left(3\right) & 3x^4 + (x+3)(x^2+2x+2) + \frac{2}{3}(x-x^2) = 2\left(x^4 + \frac{3}{2}x(x^2-3x)\right) + 3x \\ \left(4\right) & \text{There exists no } s \in \mathbb{C} \text{ such that } \sum_{n=1}^{\infty} \frac{1}{n^s} = 0, \text{ Re}(s) \neq \frac{1}{2} \text{ and s is not a negative even integer.} \end{array}$$

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 •0	0000 00000	0000	0000	00
Motivation				

"Clever" solutions:

(1) $5(3^3 \cdot 11)^2 = 2(72 + 33 - 8)$ LHS is odd, RHS is even (2) $-\frac{2}{\left(\sqrt{47} + \frac{1}{47}\right)^3} = 47 - \frac{1}{47^2}$ LHS is negative, RHS is positive (3) $3x^4 + (x+3)(x^2 + 2x + 2) + \frac{2}{3}(x - x^2) = 2\left(x^4 + \frac{3}{2}x(x^2 - 3x)\right) + 3x$ The leading coefficients don't match

(4) There exists no $s \in \mathbb{C}$ such that $\sum_{n=1}^{\infty} \frac{1}{n^s} = 0$, $\operatorname{Re}(s) \neq \frac{1}{2}$ and s is not a negative even integer.

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 •0	0000 00000	0000	0000	00
Motivation				

"Clever" solutions:

(1)
$$5(3^3 \cdot 11)^2 = 2(72 + 33 - 8)$$
 LHS is odd, RHS is even
(2) $-\frac{2}{\left(\sqrt{47} + \frac{1}{47}\right)^3} = 47 - \frac{1}{47^2}$ LHS is negative, RHS is positive
(3) $3x^4 + (x+3)(x^2 + 2x + 2) + \frac{2}{3}(x-x^2) = 2\left(x^4 + \frac{3}{2}x(x^2 - 3x)\right) + 3x$

The leading coefficients don't match

4 There exists no $s \in \mathbb{C}$ such that $\sum_{n=1}^{\infty} \frac{1}{n^s} = 0$, $\operatorname{Re}(s) \neq \frac{1}{2}$ and s is not a negative even integer. "The proof is left as an exercise to the reader"

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 •0	0000 00000	0000	0000	00
Motivation				

(1)
$$5(3^3 \cdot 11)^2 = 2(72 + 33 - 8)$$
 LHS is odd, RHS is even

(2)
$$-\frac{2}{\left(\sqrt{47}+\frac{1}{47}\right)^3} = 47 - \frac{1}{47^2}$$
 LHS is negative, RHS is positive

$$(3) \quad 3x^4 + (x+3)(x^2 + 2x + 2) + \frac{2}{3}(x-x^2) = 2\left(x^4 + \frac{3}{2}x(x^2 - 3x)\right) + 3x$$

The leading coefficients don't match

4 There exists no $s \in \mathbb{C}$ such that $\sum_{n=1}^{\infty} \frac{1}{n^s} = 0$, $\operatorname{Re}(s) \neq \frac{1}{2}$ and s is not a negative even integer. "The proof is left as an exercise to the reader"

Takeaway: sometimes we don't need to fully solve "hard" problems if we can find an easier implied problem (or, if we just quit)

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 0 ●	0000 00000	0000	0000	00
Motivation				

Introducing: knot invariants

Definition (Knot invariant)

A knot invariant is a systematic ways of assigning "nice" values to knots such that equivalent knots get mapped to the same thing — i.e., a map φ such that $K_0 \cong K_1 \implies \varphi(K_0) = \varphi(K_1).$

- \blacktriangleright Remainder mod n, sign, and leading coefficient are "invariants" in the arithmetic expressions above
 - Indispensable when "simplifying expressions" is hard

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 0 ●	0000 00000	0000	0000	00
Motivation				

Introducing: knot invariants

Definition (Knot invariant)

A knot invariant is a systematic ways of assigning "nice" values to knots such that equivalent knots get mapped to the same thing — i.e., a map φ such that $K_0 \cong K_1 \implies \varphi(K_0) = \varphi(K_1).$

- \blacktriangleright Remainder mod n, sign, and leading coefficient are "invariants" in the arithmetic expressions above
 - Indispensable when "simplifying expressions" is hard
- Game plan for constructing knot invariants:
 - 1. Define algebraic structure on knots
 - 2. Cleverly embed in something we understand better (\mathbb{Z} , $\mathbb{R}[x]$, etc.)
 - 3. Pull back results to give us information about knots

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000	0000	0000	00
Coloring				

Coloring invariants

▶ A natural way to encode knots algebraically. Procedure:

- 1. Pick a labelling set X (here, colors)
- 2. Assign a label from X to each semiarc of the diagram (semiarc = portion of strand between over / under crossings)

3. Ensure Reidemeister moves only make invertible changes to the labelling

4. If so, this labeling scheme is an invariant of the knot

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000 00000	0000	0000	00
Coloring				

Turning it into Algebra

▶ Introduce two operations: \geq , $\overline{\triangleright}$ ("under" and "over") as follows:

- Note that we label our crossings *left to right*, not top to bottom
 — this makes axioms cleaner.
- ▶ Abstractly: \succeq , \triangleright encode crossing information by how it constrains the coloring

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000	0000 00000	0000	0000	00
Coloring				

Guaranteeing invariance

▶ Let X be our set of labels. To guarantee invariance under the Reidemeister moves, we need the following:

1.
$$\forall x \in X, x \ge x = x \overline{\triangleright} x$$

- 2. $\forall x, y \in X$, the following maps are invertible: $\alpha_x(y) = y \,\overline{\triangleright}\, x$, $\beta_x(y) = y \,\underline{\triangleright}\, x$, and $S(x, y) = (y \,\overline{\triangleright}\, x, x \,\underline{\triangleright}\, y)$
- 3. $\forall x, y, z \in X$, we have the following *exchange laws*:

$$\begin{split} (x \succeq y) &\succeq (z \succeq y) = (x \trianglerighteq z) \trianglerighteq (y \trianglerighteq z) \\ (x \trianglerighteq y) &\vDash (z \trianglerighteq y) = (x \trianglerighteq z) \trianglerighteq (y \trianglerighteq z) \\ (x \trianglerighteq y) &\vDash (z \trianglerighteq y) = (x \trianglerighteq z) \trianglerighteq (y \trianglerighteq z) \end{split}$$

▶ Such a labelling scheme is called a *biquandle*.

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000 00000	0000	0000	00
Coloring				

Connection to Reidemeister moves

- ▶ Axiom 1 is required by Reidemeister I, Axiom 2 by Reidemeister II, and Axiom 3 by Reidemeister III
- ▶ Reidemeister I:

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000 00000	0000	0000	00
Skein(ish) relations				

Recall: skein(ish) relations

Ex: Jones Polynomial.

Let [] satisfy

$$\begin{bmatrix} & & \\ &$$

Then define the Jones Polynomial by

$$J(L) = (-1)^n q^{p-2n} \langle L \rangle$$

where n is the number of negative crossings, and p is the number of positive crossings. ([1], [4])

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000 00000	0000	0000	00
Skein(ish) relations				

Pros & Cons

- ► Pros:
 - Gives us polynomials, which are often easier to work with than birack-flavored invariants
 - Can use Reidemeister moves on intermediate smoothing states
- ► Cons:
 - Geometric interpretation can be challenging
 - Requires recursive enumeration of smoothed states, which is $O(2^n)$

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000 00000	0000	0000	00
Skein(ish) relations				

Pros & Cons

- ► Pros:
 - Gives us polynomials, which are often easier to work with than birack-flavored invariants
 - Can use Reidemeister moves on intermediate smoothing states
- ► Cons:
 - Geometric interpretation can be challenging
 - \blacksquare Requires recursive enumeration of smoothed states, which is $O(2^n)$
 - \blacksquare (k)not quandle-y enough

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000 00000	0000	0000	00
and the second sec				

Skein(ish) relations

Coloring-dependent skein(ish) coefficients

Definition (Biquandle Brackets)

Let X be a biquandle, and R a commutative ring with identity. Let $w \in \mathbb{R}^{\times}$, $\delta \in \mathbb{R}$, and $A, B : X \times X \to \mathbb{R}^{\times}$ such that

1. $\forall x \in X$, $A_{x,x}^2 B_{x,x}^{-1} = w$ 2. $\forall x, y \in X$,

$$-A_{x,y}^{-1}B_{x,y} - A_{x,y}B_{x,y}^{-1} = \delta$$

3. (cont. on next slide)

N.B. — for the sake of space, we write $A_{x,y}$ (or sometimes A_x) in place of A(x,y).

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000 00000	0000	0000	00

Skein(ish) relations

Coloring-dependent skein(ish) coefficients

Definition

3. $\forall x, y, z \in X$,

$$\begin{array}{l} A_x \cdot A_x \underset{z \bar{\vdash} y}{\triangleright} y \cdot A_y = A_y \underset{z \bar{\vdash} x}{\triangleright} x \cdot A_x \cdot A_x \underset{y \bar{\vdash} z}{\triangleright} z \\ A_x \cdot B_x \underset{z \bar{\vdash} y}{\triangleright} y \cdot B_y = B_y \underset{z \bar{\vdash} x}{\triangleright} x \cdot B_x \cdot A_x \underset{y \bar{\vdash} z}{\triangleright} z \\ B_x \cdot B_x \underset{z \bar{\vdash} y}{\triangleright} y \cdot A_y = A_y \underset{z \bar{\vdash} x}{\triangleright} x \cdot B_x \cdot B_x \underset{y \bar{\vdash} z}{\triangleright} z \\ B_x \cdot B_x \underset{z \bar{\vdash} y}{\triangleright} y \cdot A_z = A_y \underset{z \bar{\vdash} x}{\triangleright} x \cdot B_x \cdot B_x \underset{y \bar{\vdash} z}{\triangleright} z \\ \end{array}$$

(cont. on next slide)

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000 00000	0000	0000	00
Skein(ish) relations				

Coloring-dependent skein(ish) coefficients

Definition

3. (cont.)

$$\begin{array}{c} A_x \cdot B_x \underset{z \bar{\vdash}}{\triangleright} y \cdot A_y = A_y \underset{z \bar{\vdash}}{\triangleright} x \cdot A_x \cdot A_x \underset{z \bar{\vdash}}{\triangleright} B_y \underset{z \bar{\vdash}}{\triangleright} z + B_y \underset{z \bar{\vdash}}{\triangleright} x \cdot A_x \cdot A_x \underset{z \bar{\vdash}}{\triangleright} z \\ + \delta B_y \underset{z \bar{\vdash}}{\triangleright} x \cdot A_x \cdot B_x \underset{y \bar{\vdash}}{\triangleright} z + B_y \underset{z \bar{\vdash}}{\triangleright} x \cdot B_x \underset{z \bar{\vdash}}{e} z \\ z \bar{\vdash} x \cdot y \underset{z \bar{\vdash}}{\triangleright} z \end{array}$$

$$\begin{array}{c} A_{y\,\overrightarrow{\triangleright}\,x}\cdot B_{x}\cdot A_{x\,\underbrace{\triangleright}\,z} = A_{x}\cdot A_{x\,\underbrace{\triangleright}\,y}\cdot B_{y} + B_{x}\cdot A_{x\,\underbrace{\triangleright}\,y}\cdot A_{y} \\ z\,\overrightarrow{\triangleright}\,y & z\,\overrightarrow{\triangleright}\,y \end{array} \\ + \delta B_{x}\cdot A_{x\,\underbrace{\triangleright}\,y}\cdot B_{y} + B_{x}\cdot B_{x\,\underbrace{\triangleright}\,y}\cdot B_{y} \\ y & z\,\overrightarrow{\triangleright}\,y & z\,\overrightarrow{\triangleright}\,y \end{array}$$

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000 00000	0000	0000	00
Skein(ish) relations				

Cool facts about biquandle brackets

- ▶ Interpretation of axioms:
 - w^{n-p} = writhe correction factor
 - $\blacksquare~\delta$ adjusts for when we introduce new components
 - Axiom 3 reflects the smoothings of Reidemeister III
- \blacktriangleright Well-known special cases
 - Many biquandle invariants
 - Jones, HOMFLYPT polynomials
- ▶ Intuitive summary: biquandle brackets move structure off of strand labels and into coefficients

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
000000000	0000	0000	0000	00
00 Skein(ish) relations	0000			

Encorporating parity

▶ Recall: in virtual knots, we can assign parity to crossings

▶ How do we distinguish these?

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000	•000	0000	00
Parity Biquandles				

- ▶ Idea: make $\overline{\triangleright}$, $\underline{\triangleright}$ functions depend on parity of crossing
- ▶ How do we adapt our biquandle definition?
 - Crossings in Reidemeister I moves are always even, so no constraints there
 - Reidemeister II still forces invertibility
 - Reidemeister III?

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000	•000	0000	00
Parity Biquandles				

- ▶ Idea: make $\overline{\triangleright}$, $\underline{\triangleright}$ functions depend on parity of crossing
- ▶ How do we adapt our biquandle definition?
 - Crossings in Reidemeister I moves are always even, so no constraints there
 - Reidemeister II still forces invertibility
 - Reidemeister III?

Lemma (Nelson et. al, [2])

Let K be a virtual knot. Then for any Reidemeister III move, either

1. All of the crossings are even, or

- 2. Two are odd and one is even
- Hence...

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000	0000	0000	0000	00
Parity Biquandles				

Parity Biquandles

Definition (Nelson et. al)

Let X be a set of labels together with four binary operations: $\bar{\rhd}^0, \underline{\rhd}^0, \bar{\rhd}^1, \underline{\rhd}^1$ such that

- 1. X together with $\overline{\triangleright}^0, \underline{\triangleright}^0$ is a biquandle (X with $\overline{\triangleright}^1, \underline{\triangleright}^1$ need not be)
- 2. Biquandle axiom 2 applies to $\overline{\triangleright}^1, \underline{\triangleright}^1$
- 3. For all $(a, b, c) \in \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$ and for all $x, y, z \in X$, we have

$$\begin{aligned} &(z\overline{\triangleright}{}^a y)\overline{\triangleright}{}^b(x\overline{\triangleright}{}^c y) = (z\overline{\triangleright}{}^b x)\overline{\triangleright}{}^a(y\underline{\triangleright}{}^c x)\\ &(x\overline{\triangleright}{}^a y)\underline{\triangleright}{}^b(z\overline{\triangleright}{}^c y) = (x\underline{\triangleright}{}^b z)\overline{\triangleright}{}^a(y\underline{\triangleright}{}^c z)\\ &(y\underline{\triangleright}{}^a x)\underline{\triangleright}{}^b(z\overline{\triangleright}{}^c x) = (y\underline{\triangleright}{}^b z)\underline{\triangleright}{}^a(x\underline{\triangleright}{}^c z)\end{aligned}$$

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000	0000 00000	0000	0000	00
Parity Biguandles				

and finally...Kaestner Brackets!

Definition

Let $(X, \overline{\triangleright}^0, \underline{\triangleright}^0, \overline{\triangleright}^1, \underline{\triangleright}^1)$ be a parity biquandle, and let R be a commutative ring with identity. Let $\delta \in R$ and $A_0, B_0, A_1, B_1 : X \times X \to R^{\times}$. Then we call $((X), A_0, B_0, A_1, B_1)$ a Kaestner bracket iff the following hold:

- 1. $((X, \overline{\triangleright}^0, \underline{\triangleright}^0), A_0, B_0)$ is a biquandle bracket,
- 2. A_1, B_1 are invertible,
- 3. For all $x, y \in X$,

$$\delta = -A_{1,x,y} \cdot B_{1,x,y}^{-1} - A_{1,x,y}^{-1} \cdot B_{1,x,y}$$

(cont. on next slide)

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000 00000	0000	0000	00
Parity Biquandles				

and finally...Kaestner Brackets!

Definition

3. (cont.) For all $(a, b, c) \in \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$, we have the following:

$$\overbrace{A_{a,x} \cdot A_{b,x} \underset{z \bar{b}{\scriptstyle c} \circ y}{y} \left(\begin{array}{c} (i) \\ \hline A_{a,x} \cdot A_{b,x} \underset{z \bar{b}{\scriptstyle c} \circ y}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} (i) \end{array}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} (i) \end{array}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} (i) \end{array}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} (i) \end{array}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} (i) \end{array}{y} (i) \end{array}{y} \left(\begin{array}{c} (i) \\ \hline A_{c,y} \underset{z \bar{b}{\scriptstyle c} b_{x}}{y} (i) \end{array}{y} (i$$

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000 00000	0000	0000	00
Parity Biquandles				

and finally...Kaestner Brackets!

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000 00000	000●	0000	00
Parity Biquandles				

Corresponding smoothings

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000	0000	000●	0000	00
Parity Biquandles				

Corresponding smoothings

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000	0000 00000	0000	●000	00

Results

- ► The choice we had:
 - (a) Pursue further results theoretically
 - (b) Pursue further results computationally

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000	0000 00000	0000	●000	00

Results

- ► The choice we had:
 - (a) Pursue further results theoretically
 - (b) Pursue further results computationally
- ▶ Decision: both, but start with (b) first

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000 00000	0000	0000	00

Computational results

- ▶ Huge algorithmic improvements to search code for biquandles, parity biquandles, and biquandle brackets
- ▶ Performance comparison (new code vs. old code):
 - \blacksquare On first non-instant return: ≈ 1 sec vs. ≈ 301 sec
 - On a previously unfeasible computation: ≈ 46 sec vs. >50 day runtime (this is lower bound is very conservative)
- ▶ Plus, first examples of Kaestner brackets!
- ▶ Possible reduction to graph alg

Background & Motivation 000000000 00	Biquandles & Brackets 0000 00000	Kaestner Brackets 0000	Results 00●0	Acknowledgements 00

Future work

- \blacktriangleright Implement the graph-based search algorithm
- Categorification of knots (inspired by δ)
 - Current idea: we have lots of known unknotting moves why not use them as knotting moves instead?
 - The UnKnot becomes the "identity" (!)
- ► A new knot presentation!

Forest Kobayashi Kaestner Brackets

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000	0000	0000	00

A new grid presentation!

Harvey Mudd College

Background & Motivation	Biquandles & Brackets	Kaestner Brackets	Results	Acknowledgements
00000000 00	0000 00000	0000	0000	•0

- ▶ Jon Hayase, for helping me implement the grid presentation
- ▶ Prof. Nelson, for being an amazing advisor
- ▶ Harvey Mudd College, for funding my research
- ▶ The conference organizers, for all of their hard work in making UnKnot IV happen!

Forest Kobayashi Kaestner Brackets

Background & Motivation 000000000 00	Biquandles & Brackets 0000 00000	Kaestner Brackets 0000	Results 0000	Acknowledgements O•

References

- L. H. Kauffman. State models and the jones polynomial. *Topology*, 26(3):395–407, Jan 1987.
- A. Kaestner, S. Nelson, and L. Selker. Parity Biquandle Invariants of Virtual Knots. *arXiv*, Jul 2015.
- M. Lackenby. Elementary knot theory. arXiv, Apr 2016.
- S. Nelson and M. Elhamdadi. *Quandles: An Introduction to the Algeba of Knots.* American Mathematical Society, 2015.

Forest Kobayashi Kaestner Brackets