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» Full construction of Kaestner brackets is a bit involved, so we’ll
focus mostly on big-picture stuff for today:

1.

Basic definitions

. Why we should care about invariants
. Coloring invariants, skein(ish) relations, and how to combine them

2
3
4.
5

Distinguishing virtual knots: Kaestner Brackets

. Results, future directions




A knot is an embedding K : S* < R3.
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A knot is an embedding K : S* < R3.
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Figure 1: The (7,2) knot.
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An oriented knot is a knot K that has been endowed with a choice of
orientation.
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An oriented knot is a knot K that has been endowed with a choice of

orientation.

K2
Figure 2: Oriented (7,2) :)}
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» Breaks represent crossings

» We call the top strand the “overstrand” and the bottom strand the
“understrand.”
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classes

. two

» Oriented case







» Ex: in R*, all knots are unknotted!
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» Ex: in R*, all knots are unknotted!

Let K : ST < R* be an embedding. At every crossing in K, we can
exchange over/understrands by tucking one into the extra dimension and
repositioning the other.

Original state Tuck & reposition Untuck & smooth

By a previous result, this implies K is unknotted. |




» Ex: virtual knots




» Ex: virtual knots




» Ex: virtual knots

» This “crossing” in our diagram is not really there!




» Ex: virtual knots

We assign crossings in virtual knots a “parity” based on how many
classical crossings we encounter travelling from understrand to




Let Ko, K1 be knots. Then we say Ky = K if there is a continuous
map F : R3 x [0,1] — R3 such that Fy is identity, Ko L K, and
each F} is a homeomorphism.

» Intuitively: we can deform K| into K3 without tearing / gluing
Ky or the space it lives in.

» Various other perspectives
m Oriented homeomorphism

m Homotopy “through” knots




» How do we tell if Kg = K17

m Surprisingly hard!
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» How do we tell if Kg = K17

m Surprisingly hard!
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Q: Are these ambient isotopic? é}}




» How do we tell if Kg = K17

m Surprisingly hard!
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A: Nope.
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» How do we tell if Kg = K17
m Surprisingly hard!

m ﬂ
5
Q: What about these? (élf}))




» How do we tell if Kg = K17

» Surprisingly hard!
- q
by w
K(16,32686) K(16,32686)

A: Yes! r)}
o




Ko =2 K1 iff we can turn Ko into K1 via a finite sequence of the following:

N( N) S N\%
] J \\ )\




Ko =2 K1 iff we can turn Ko into K1 via a finite sequence of the following:

N( N) S N\%
] J \\ )\

» Can prove Ky = K; by exhibiting such a sequence




» Existing algorithms

m Highly technical
m Very inefficient

® Those that have proven complexities involve things like
“O(k 1 n) where n is large”

® Even NP seems out-of-reach for the time being

® See [3] for more

» What now?




Analogy: in 10 seconds or less. .. which of the following are true?
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Analogy: in 10 seconds or less. .. which of the following are true?
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5(3%-11) = 2(72 + 33 - 8)
2 1

— 47—
1\3 72
(VaT+ &)
2 3
3zt 4 (@ + 3) (22 + 22+ 2) + g(a: —2?) = 2(14 + 5:1:(:62 — 3:0)) + 3z

There exists no s € C such that Z:ozl nis =0, Re(s) # % and s is not a
negative even integer.




“Clever” solutions:
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5(3%-11)% = 2(72 + 33 — 8) LHS is odd, RHS is even
2 1

g =T

(Va7 + ) 7

3
3zt 4 (@ + 3) (22 + 22+ 2) + g(a} —2%) = 2<z4 + 5(6(:132 — 3:0)) + 3z

oo 1
n=1 ns

There exists no s € C such that Z

=0, Re(s) # % and s is not a
negative even integer.
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5(3%-11)% = 2(72 + 33 — 8) LHS is odd, RHS is even

2 1
———— =47 — — LHS is negative, RHS is positive
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2 3
3zt 4 (@ + 3) (22 + 22+ 2) + g(a: —2%) = 2<z4 + 5(6(:132 — 3:0)) + 3z

oo 1
n=1 ns

There exists no s € C such that Z

=0, Re(s) # % and s is not a
negative even integer.
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5(3%-11)% = 2(72 + 33 — 8) LHS is odd, RHS is even
2 1

T 3 47 — m LHS is negative, RHS is positive
(VaT+ &)

2 3
3zt 4 (@ + 3) (22 + 22+ 2) + g(a: —2%) = 2<z4 + 5(6(:132 — 3:0)) + 3z
The leading coefficients don’t match

There exists no s € C such that Z:ozl nis =0, Re(s) # % and s is not a
negative even integer.




“Clever” solutions:
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5(3%-11)% = 2(72 + 33 — 8) LHS is odd, RHS is even
2 1

T 3 47 — m LHS is negative, RHS is positive
(VaT+ &)

2 3
3zt 4 (@ + 3) (22 + 22+ 2) + g(a: —2%) = 2<z4 + 5(6(:132 — 3:0)) + 3z
The leading coefficients don’t match

There exists no s € C such that Z:ozl nis =0, Re(s) # % and s is not a
negative even integer. “The proof is left as an exercise to the reader”
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5(3%-11)” = 2(72 + 33— 8) LHS is odd, RHS is cven
2 1
————— =47 — — LHS is negative, RHS is positive

(vir+ &))" 4T

2
3zt + (@ + 3)(2? + 22+ 2) + g(z —z?) = 2(x4 + gx(m2 — 3:1:)) + 3z

The leading coefficients don’t match

There exists no s € C such that ZZO=1 n% =0, Re(s) # % and s is not a
negative even integer. “The proof is left as an exercise to the reader”

Takeaway: sometimes we don’t need to fully solve “hard” problems if we
can find an easier implied problem (or, if we just quit)




A knot invariant is a systematic ways of assigning “nice” values to knots such that
equivalent knots get mapped to the same thing — i.e., a map ¢ such that
Ko =2 K1 = ¢(Ko) = ¢(K1).

» Remainder mod n, sign, and leading coefficent are “invariants” in the
arithmetic expressions above

m Indispensable when “simplifying expressions” is hard

o
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A knot invariant is a systematic ways of assigning “nice” values to knots such that
equivalent knots get mapped to the same thing — i.e., a map ¢ such that
Ko =2 K1 = ¢(Ko) = ¢(K1).

» Remainder mod n, sign, and leading coefficent are “invariants” in the
arithmetic expressions above

m Indispensable when “simplifying expressions” is hard

» Game plan for constructing knot invariants:
1. Define algebraic structure on knots
2. Cleverly embed in something we understand better (Z, R[z], etc.)

Koo e Gl

3. Pull back results to give us information about knots




» A natural way to encode knots algebraically. Procedure:

1. Pick a labelling set X (here, colors)

2. Assign a label from X to each semiarc of the diagram (semiarc =
portion of strand between over / under crossings)

—~
\/)

3. Ensure Reidemeister moves only make invertible changes to the

labelling
4. If so, this labeling scheme is an invariant of the knot r)}
S




» Introduce two operations: >, > (“under” and “over”) as follows:

m Note that we label our crossings left to right, not top to bottom
— this makes axioms cleaner.

» Abstractly: >, > encode crossing information by how it constrains the
coloring




» Let X be our set of labels. To guarantee invariance under the
Reidemeister moves, we need the following:

l. Ve X,zpz=2bx

2. Vz,y € X, the following maps are invertible: a,(y) =y 5 z,
Ba(y) =y, and S(z,y) = (y>z, x> y)

3. Vz,y,z € X, we have the following exchange laws:

zry)=(z22)e(y>2)
zpy) = (r>2)>(y> 2)
zby




» Axiom 1 is required by Reidemeister I, Axiom 2 by Reidemeister
11, and Axiom 3 by Reidemeister 111

r>x
I O
Y

T>T

» Similarly for Reidemeister 2, Reidemeister 3

» Reidemeister I:

% UDD
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Let [ ] satisfy [&/] [ ......... ]_qD """"" C ]
(OO Ol-eer

Then define the Jones Polynomial by
J(L) = (=1)"g"~>™(L)

where n is the number of negative crossings, and p is the number of positive
crossings. ([1], [4]) | |




» Pros:

m Gives us polynomials, which are often easier to work with than
birack-flavored invariants

m Can use Reidemeister moves on intermediate smoothing states
» Cons:
m Geometric interpretation can be challenging

m Requires recursive enumeration of smoothed states, which is

02"




» Pros:

m Gives us polynomials, which are often easier to work with than
birack-flavored invariants

m Can use Reidemeister moves on intermediate smoothing states
» Cons:
m Geometric interpretation can be challenging

m Requires recursive enumeration of smoothed states, which is

o2m)
m (k)not quandle-y enough




Let X be a biquandle, and R a commutative ring with identity. Let
we R, §€ R, and A,B: X x X — R* such that

1. Vz € X,

Ai’mB;,:i =w
2. Vx,y € X,
—A;,;Bz,y - Am,yB;JlJ =4

3. (cont. on next slide)

N.B. — for the sake of space, we write A, , (or sometimes A;) in place of A(z,y).
y




3. Vz,y,z € X,
Av-Acpy-Ay=Ays, Ay Acp -
v zby # zbx # vk =z
Awagy ByZBygz Bm Awgz
Yy 2By 2 25 @ z yo z
Bm'Bzgy'Ay=Ay;m Bz - Bzp =
v zby # zbx Z ye =z




3. (cont.)

Yy

zDx

Aw~B1:Ey'Ay=A =

zby

z

Y

zby

z

Yy

zDy

zby

52 Bz -Axpz=Az - Aspy-By+ Bz Azpy-Ay
zDy Z
+6BzAwaBy+BzBazEyBy




» Interpretation of axioms:

m w" P = writhe correction factor

m 0 adjusts for when we introduce new components

m Axiom 3 reflects the smoothings of Reidemeister I1I
» Well-known special cases

m Many biquandle invariants

m Jones, HOMFLYPT polynomials

» Intuitive summary: biquandle brackets move structure off of
strand labels and into coefficients




» Recall: in virtual knots, we can assign parity to crossings

0

» How do we distinguish these?

% UDD
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» Idea: make &, > functions depend on parity of crossing
» How do we adapt our biquandle definition?

m Crossings in Reidemeister I moves are always even, so no
constraints there

m Reidemeister II still forces invertibility

m Reidemeister I117




» Idea: make &, > functions depend on parity of crossing
» How do we adapt our biquandle definition?

m Crossings in Reidemeister I moves are always even, so no
constraints there

m Reidemeister II still forces invertibility

m Reidemeister I117

Let K be a virtual knot. Then for any Reidemeister I1I move,
either
1. All of the crossings are even, or

2. Two are odd and one is even

m Hence. ..




Let X be a set of labels together with four binary operations: 50, [ 51 > such
that

1. X together with 5%, >0 is a biquandle (X with 5!, > need not be)

2. Biquandle axiom 2 applies to 51, »?

3. For all (a,b,c) € {(1,1,0),(1,0,1),(0,1,1)} and for all z,y,z € X, we have
(25 %y)5" (25 y) = (z5"2)5* (y>“2)
(@5 y)e’ (25 Y) = (z1"2)5% (y>°2)

(ypz)p(25°2) = (yb2)p (2> 2)




Let (X, 50, >0, 51 >1) be a parity biquandle, and let R be a commutative ring
with identity. Let § € R and Ao, Bo, A1, B1 : X x X — R*. Then we call
((X), Ao, Bo, A1, B1) a Kaestner bracket iff the following hold:

1. ((X,59 9), Ag, Bo) is a biquandle bracket,
2. Aj, Bj are invertible,

3. Forall z,y € X,

_ 1 1
d=—A1ey- Bl,m,y - Al,m,y “Biay

(cont. on next slide)




3. (cont.) For all (a,b,c) € {(1,1,0),(1,0,1),(0,1,1)}, we have the following:

i) (I
A
LN Y LN
A“’z : Ab,zkay . Acvg = Ac‘y;az : Ab*‘: : Aa,ngz
v 25y 25l y>Cz
) (VI
N A
~
Agz - Bb,mzay . Bc,g = Bc,yl> Bbf Aa,zz
Y 25y 250z y>Cz
) av)
A NG
- ~
Ba,w - By ppay - AC,!;’ =Acypon Bb,ﬂzﬂ : Ba,zg z
¥ 2B Sy 250z y>Cz
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Figure 4: LHS Smoothings
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Figure 4: RHS Smoothings
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» The choice we had:

(a) Pursue further results theoretically

(b) Pursue further results computationally

o




» The choice we had:

(a) Pursue further results theoretically
(b) Pursue further results computationally

» Decision: both, but start with (b) first

o




» Huge algorithmic improvements to search code for biquandles, parity
biquandles, and biquandle brackets

» Performance comparison (new code vs. old code):
m On first non-instant return: ~ 1 sec vs. ~ 301 sec

m On a previously unfeasible computation: = 46 sec vs. >50 day
runtime (this is lower bound is very conservative)

» Plus, first examples of Kaestner brackets!

» Possible reduction to graph alg




» Implement the graph-based search algorithm

» Categorification of knots (inspired by 4)

m Current idea: we have lots of known unknotting moves — why
not use them as knotting moves instead?

m The UnKnot becomes the “identity” (!)

» A new knot presentation!







» Jon Hayase, for helping me implement the grid presentation
» Prof. Nelson, for being an amazing advisor
» Harvey Mudd College, for funding my research

» The conference organizers, for all of their hard work in making
UnKnot IV happen!
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