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Introduction
Definition 1. Let X be a topological space. A knot in X is an embedding K : S1 ↪→ X .

K(7,2)

Figure 1: Example knot

Usually, we assume X = R3 (classical knots), but we may also consider knots in thickened orientable
surfaces (virtual knots). In any case, we want to talk about what it means for two knots to be “the
same.” This turns out to depend on the choice of X .
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Figure 2: Knot on torus that comes undone in R3

• All knots in R3 come unknotted in R4.
• Some knots on a torus come unknotted in R3.
• Definition of knot equivalence should reflect this.

Definition 2 (Ambient Isotopy). Let K0, K1 be knots in X . Then we say K0 ∼= K1 if there is a
continuous map F : X × [0, 1]→ X such that F (K0, 0) = K0, F (K0, 1) = K1, and each F (·, t) is a
homeomorphism.

• If we restrict ourselves to certain well-behaved knots, we can work entirely through diagrams.
Theorem 1 (Reidemeister, 1927). Two (tame) knots K0, K1 are equivalent iff their diagrams are
related by a finite sequence of the following moves:

∼ ∼ ∼
• Very elegant characterization of knot equivalence on a theoretical level.
• However: in practice, Reidemeister-based algorithms are very inefficient (not even NP).

Knot Invariants

Motivation: in 20 seconds or less, which are true?
1. 5(33 · 11)2 = 2(72 + 33− 8)

2. − 2(√
47 + 1

47
)3 = 47− 1

472

3. 3x4 + (x + 3)(x2 + 2x + 2) + 2
3(x− x2) = 2

x4 + 3
2x(x2 − 3x)

 + 3x

Clever Solutions:
1. LHS odd, RHS even

2. LHS negative, RHS positive

3. Leading coefficients don’t match

Idea: Coarse heuristics sometimes let us eschew full computations. Let’s apply this to knots.
Definition 3 (Knot Invariant). Let Knot be the category of knots, and let C be another category.
Then a knot invariant is a map F : Knot→ C such that

K0 ∼= K1 =⇒ F (K0) ∼= F (K1).

• Intuitively: a systematic way of assigning “nice” values to knots such that equivalent knots get
mapped to the same thing.

• “Clever solutions” above can be thought of as analogous invariants for strings of arithmetic
expressions in Z, R, and Q[x], respectively.

• Today: two important classes of knot invariants, coloring invariants and skein-based invariants.

Coloring invariants: Loosely speaking, these encode knots in group-like algebraic structures.
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Example (Biquandles): Let X be a set and K be a knot represented by some
diagram D. Label (“color”) each arc in D by an element of X . Then, define two
binary operations ., . (read “under” and “over,” respectively) that describe how
our labels change when strands cross (see diagram at right).
By translating the Reidemeister moves into algebraic axioms for ., . , we can turn “coloring by X”
into a knot invariant! In this case we call (X, ., .) a biquandle.

Skein-based invariants: These recursively convert diagrams to polynomials by a “bracket map”
like the following (the process terminates with unknots being assigned a fixed value δ and then
multiplying by a normalization constant to account for writhe).
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Example (Jones Polynomial): The celebrated Jones Polynomial can be constructed this way using
the Kauffman Bracket, which corresponds to the choices B = A−1, and δ = −(A2 + A−2).

Some notes:
• Many of our best invariants are skein-based. How can we make them even stronger?
• One approach: the skein rules treat all crossings in a knot as if they are “the same.” To

distinguish them, we can first color the knot with a biquandle and then make the coefficients
A,B dependent on the coloring at each crossing. This yields biquandle brackets, which were first
introduced in [3].

Kaestner Brackets
Building off this work, we introduce a generalization of biquandle brackets called Kaestner brackets.
These incorporate parity information to yield invariants that are generally stronger than biquandle
brackets when applied to virtual knots.
Recall that a classical knot is a knot in R3 and a virtual knot is a knot in a thickned orientable
surface (note, all classical knots are virtual knots). An interesting property of virtual knots is that
unlike classical knots, some of them can have crossings with non-zero parity:
Definition 4 (Parity). Let K be a knot represented by some diagram D. For each crossing c in D,
count the number of crossings encountered in traveling from the overstrand at c to the understrand
at c; denote this quantity by nc. Then we define the parity of c to be nc mod 2.

We will incorporate parity in two places to enhance biquandle brackets. First, we will replace
biquandles with parity biquandles (first introduced in [1]), then we will replace the biquandle bracket
coefficient maps with parity-dependent versions.
Definition 5 (Parity Biquandle). A parity biquandle is a set X together with four binary
operations . 0, . 0, . 1, . 1 such that

(i) (X, . 0, . 0) is a biquandle (note, (X, . 1, . 1) need not be)

(ii) For all x, y ∈ X , the maps x α1
y7−→ x . 1 y, x β1

y7−→ x . 1 y, and (x, y) S7−→ (y . 1 x, x . 1 y) are all
invertible, and

(iii) For all (a, b, c) ∈ {(1, 1, 0), (1, 0, 1), (0, 1, 1)} and for all x, y, z ∈ X , we have the mixed exchange
laws

(z .ay). b(x. cy) = (z . bx).a(y. cx)
(x.ay). b(z . cy) = (x. bz).a(y. cz)
(y.ax). b(z . cx) = (y. bz).a(x. cz)

Now, we define Kaestner Brackets:
Definition 6. Let X = (X, . 0, . 0, . 1, . 1) be a parity biquandle, and let R be a commutative ring
with identity. Let A0, B0, A1, B1 : X ×X → R×. Then the collection (X, A0, B0, A1, B1) is a
Kaestner bracket iff it satisfies the following conditions:

(i) ((X, . 0, . 0), A0, B0) is a biquandle bracket,
(ii)A1, B1 : X ×X → R× are invertible,
(iii) There exists some δ ∈ R such that for all x, y ∈ X ,

−A1(x, y) ·B−1
1 (x, y)− A−1

1 (x, y) ·B1(x, y) = δ

(iv) For all x, y, z ∈ X and for all (a, b, c) ∈ {(1, 1, 0), (1, 0, 1), (0, 1, 1)}, we have the following (note,

for the sake of notational compactness we write terms like A0(x, y) as A0,x
y

instead):
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These axioms guarantee that polynomials computed using the coloring-dependent skein relations
below will be invariants of oriented links. For further details on the construction, see [2].
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We can think of Kaestner brackets as a general cookbook for constructing knot polynomials with
coloring-dependent skein relations. However, one should note that if we employ a constant coloring
(i.e., all arcs are labeled identically), then we can also recover well-known invariants such as the
Jones, Alexander, and HOMFLYPT polynomials as special cases of Kaestner brackets.

Results
• We have demonstrated examples of Kaestner brackets that outperform their classical biquandle

bracket counterparts, thus the addition of parity information is meaningful!
• In pursuing computational results we made significant improvements on biquandle enumeration

algorithms. In one case, we lowered runtime for a calculation from > 50 days to just 46 seconds.
• We also reformulated the axioms for Trace Diagrams (a digraph-based encoding scheme for

knots) to yield representations that are more elegant theoretically and computationally.

Questions for Further Research
• Is there a way to relax the condition that δ be constant? In particular, can we make δ depend on

the traces in our Trace Diagrams?
• As we’ve seen, including parity information improves the performance of our invariants in

distinguishing virtual knots. Can we apply similar ideas by using remainder mod 4 to strengthen
invariants of classical knots?

• For computational purposes, we restricted all of our searches to finite parity biquandles with
bracket maps over finite fields. How can we extend these techniques to search for Kaestner
brackets in infinite rings (e.g., R[x])?
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